Image | Item | Location | Available | |
---|---|---|---|---|
SparkFun Block for Intel® Edison - Base The Intel® Edison is an ultra small computing platform that will change the way you look at embedded electronics. Each Edison is packed with a huge amount of tech goodies into a tiny package while still providing the same robust strength of your go-to single board computer. Powered by the Intel® Atom™ SoC dual-core CPU and including an integrated WiFi, Bluetooth LE, and a 70-pin connector to attach a veritable slew of shield-like “Blocks” which can be stacked on top of each other. It’s no wonder how this little guy is lowering the barrier of entry on the world of electronics! The Base Block serves as add-on for the Intel® Edison by allowing you to attach different peripherals like a key board, mouse, or thumb drive. Basically anything that can plug into a USB can now connect to your Edison! Equipped with a micro AB USB backed by USB OTG and FT231X respectively, you should have no issues attaching external hardware to your Edison. If you are looking to add a little more stability to your Intel® Edison stack, check out this Hardware Pack. It will provide you with increased mechanical strength for stacking Blocks on your Edison! | 3/3 | |||
SparkFun USB LiPoly Charger - Single Cell If you need to charge LiPo batteries, this simple charger will do just that, and do it fast! The SparkFun USB LiPo Charger is a basic charging circuit that allows you to charge 3.7V LiPo cells at a rate of 500mA or 100mA. It is designed to charge single-cell Li-Ion or Li-Polymer batteries. The board incorporates a charging circuit, status LED, selectable solder jumper for 500mA or 100mA charging current, external LED footprint, USB input, two pre-installed JST connectors for SYS OUT and BATT IN, and (back by popular demand) a barrel jack connector. There is also a ‘SYS OUT’ with a pre-installed JST connector which allows you to connect the charging circuit directly to your project so you don’t need to disconnect the charger each time you want to use it. | 1/1 | |||
VERTER 5V USB Buck-Boost - 500mA from 3V-5V / 1000ma from 5V-12V Convert just about any battery pack to 5V with VERTER - our fresh new Buck-Boost power converter. VERTER can take battery voltages from 3-12VDC and output a nice 5V DC, which makes it a perfect universal power supply for your portable project! Where Verter really shines is when you have a battery or power range that can fluctuate a lot, or you don't know what you'll end up using. It operates smoothly over the 3-12V range, moving from a boost converter (3-5V in) to a buck converter (5-12V in) on the fly. Please note! This chip can do both, but it really works better as a buck converter than a boost. If you need a full 500mA out, it will struggle as it gets down to 3V and the output will sag to about 4.8V (which is still within standard USB power specs). If you only need something to boost a voltage up to 5V and you want it to be really good at it, check out our PowerBoost series, which excel at that. Like our popular 5V 1A USB wall adapter, we tweaked the output to be 5.2V instead of a straight-up 5.0V so that there's a little bit of 'headroom' long cables, high draw, the addition of a diode on the output if you wish, etc. The 5.2V is safe for all 5V-powered electronics like Arduino, Raspberry Pi, or Beagle Bone while preventing icky brown-outs during high current draw because of USB cable resistance.The VERTER has at the heart a TPS63060 boost converter from TI. This buck-boost converter chip can handle a wide range of voltages (3-12V) and has some really nice extras such as power good output, 2A internal switch, synchronous conversion, excellent efficiency, and 2.2MHz high-frequency operation. Check out these specs! Synchronous operation means you can disconnect the output completely by connecting the ENable pin to ground. This will completely turn off the output 2A internal switch means you can get out 500mA from as low as 3V, and at least 1000mA from inputs as high 12V On-board 500mA charge-rate 'Apple/iOS' data resistors. Solder in the included USB connector and you can plug in any iPhone or iPod for 500mA charge rate. Not suggested for iPad (which really needs 1A charge rate). Full breakout for battery in, control pins and power out 90%+ operating efficiency in most cases (see datasheet for efficiency graphs), and low quiescent current: 5mA when enabled and power LED is on, 20uA when disabled (power and low batt LED are off) Great for powering your robot, Arduino project, single-board-computer such as Raspberry Pi or BeagleBone from a wide variety of inputs. We especially like it for use with 4 x AA batteries, which can range from 7V for fresh alkalines down to 4V for nearly-dead rechargeables. If you're only going to be using voltages higher than 6V, we recommend our UBEC step-down. If you're only going to be using voltages under 5V, check out the PowerBoost 500 which has much better boosting capability Each order comes with one fully assembled and tested PCB, 2 pin terminal block, and a loose USB A jack. If you are powering your project from USB, solder the USB A jack in (a 3-minute soldering task). If you would like to use a terminal block, pick up a 3.5mm 2pin block here and solder to the output spot where the USB jack would go. The terminal block goes on the input side, so you can easily connect and disconnect a battery pack. Or don't solder anything in for a more compact power pack. Note: The terminal block included with your product may be blue or black. | 2/2 | |||
PowerBoost 500 Charger - Rechargeable 5V Lipo USB Boost @ 500mA+ PowerBoost 500C is the perfect power supply for your portable project! With a built-in battery charger circuit, you'll be able to keep your project running even while recharging the battery! This little DC/DC boost converter module can be powered by any 3.7V LiIon/LiPoly battery, and convert the battery output to 5.2V DC for running your 5V projects. If you need a 1A battery charger, smart load-sharing, and 1A iOS resistors, check out the Powerboost 1000C Like our popular 5V 1A USB wall adapter, we tweaked the output to be 5.2V instead of a straight-up 5.0V so that there's a little bit of 'headroom' for long cables, high draw, the addition of a diode on the output if you wish, etc. The 5.2V is safe for all 5V-powered electronics like Arduino, Raspberry Pi, or Beagle Bone while preventing icky brown-outs during high current draw because of USB cable resistance. The PowerBoost 500C has at the heart a TPS61090 boost converter from TI. This boost converter chip has some really nice extras such as low battery detection, 2A internal switch, synchronous conversion, excellent efficiency, and 700KHz high-frequency operation. Check out these specs! Synchronous operation means you can disconnect the output completely by connecting the ENable pin to ground. This will completely turn off the output 2A internal switch (~2.5A peak limiting) means you can get 500mA+ from a 3.7V LiPoly/LiIon battery. We had no problem drawing 1000mA, just make sure your battery can handle it! Low battery indicator LED lights up red when the voltage dips below 3.2V, optimized for LiPo/LiIon battery usage Onboard 500mA charge-rate 'iOS' data resistors. Solder in the USB connector and you can plug in any iPhone or iPod for 500mA charge rate. Not suggested for large iPads. Full breakout for battery in, control pins and power out 90%+ operating efficiency in most cases (see datasheet for efficiency graphs), and low quiescent current: 5mA when enabled and power LED is on, 20uA when disabled (power and low batt LED are off) To make this even more useful, we stuck a MicroLipo charger on the other side. The charger circuitry is powered from a microUSB jack, and will recharge any 3.7V/4.2V LiIon or LiPoly battery at 500mA max rate. There's two LEDs for monitoring the charge rate, a yellow one tells you its working, a green one lights up when its done. You can charge and boost at the same time no problem, without any interruption on the output so its fine for use as a "UPS" (un-interruptable power supply) for a low-current draw device. Just be aware that the charge rate is 500mA max, so if you're drawing more than ~300mA continuously from the 5V output side, the battery will slowly drain since the charge rate is less than the dis-charge rate. Great for powering your robot, Arduino project, single-board-computer such as Raspberry Pi or BeagleBone! Each order comes with one fully assembled and tested PCB and a loose USB A jack. If you are powering your project from USB, solder the USB A jack in (a 3-minute soldering task). If you would like to use a terminal block, pick up a 3.5mm 2pin block here and solder to the output spot where the USB jack would go. Or don't solder anything in for a more compact power pack. Each order comes with a fully assembled and tested PowerBoost 500C + USB jack. Does not come with a Lipoly or LiIon battery, but we have tons in the shop, just pick one with more than 500mAh of capacity. Also doesn't come with the nice iPhone or charger cable. You can also grab a switch that can be soldered in to create an output on/off switch. Be sure to read our lovely tutorial for details, schematics, and more! If you're trying to figure out how much current your project is using, check out the CHARGER DOCTOR! | 1/1 | |||
PowerBoost 1000 Basic - 5V USB Boost @ 1000mA from 1.8V+ PowerBoost is the perfect power supply for your power-hungry portable project! This little DC/DC boost converter module can run from 1.8V batteries or higher, and convert that voltage to 5.2V DC for running your 5V projects. With a beefy 4A DC/DC converter, it can give you 1A+ from as low as 2V. Like our popular 5V 1A USB wall adapter, we tweaked the output to be 5.2V instead of a straight-up 5.0V so that there's a little bit of 'headroom' long cables, high draw, the addition of a diode on the output if you wish, etc. The 5.2V is safe for all 5V-powered electronics like Arduino, Raspberry Pi, or Beagle Bone while preventing icky brown-outs during high current draw because of USB cable resistance. The PowerBoost 1000 has at the heart a TPS61030 boost converter from TI. This boost converter chip has some really nice extras such as low battery detection, 4A internal switch, synchronous conversion, excellent efficiency, and 700KHz high-frequency operation. Check out these specs! Synchronous operation means you can disconnect the output completely by connecting the ENable pin to ground. This will completely turn off the output 4A internal switch means you can get 1000mA+ from as low as 1.8V, 1500mA+ from 2 NiMH or Alkaline batteries, and at least 2000mA from a 3.7V LiPoly/LiIon battery or 3 NiMH/Alkalines. Just make sure your batteries can actually supply the required 2-4A, OK? Low battery indicator LED lights up red when the voltage dips below 3.2V, optimized for the most common usage of LiPo/LiIon battery usage On-board 1000mA charge-rate 'Apple/iOS' data resistors. Solder in the included USB connector and you can plug in any iPhone or iPod for a speedy 1000mA charge rate. Works with iPads, both mini and 'classic' type. Full breakout for battery in, control pins and power out 90%+ operating efficiency in most cases (see datasheet for efficiency graphs), and low quiescent current: 5mA when enabled and power LED is on, 20uA when disabled (power and low batt LED are off) Great for powering your robot, Arduino project, single-board-computer such as Raspberry Pi or BeagleBone! Each order comes with one fully assembled and tested PCB, a loose 2-PH JST jack, a 2-pin Terminal block and a loose USB A jack. If you are powering your project from USB, solder the USB A jack in (a 3-minute soldering task). Then choose either JST for input (JST is often used for our LiIon batteries, but the connector is only rated for 2A) or a terminal block. The 1000 version comes with a 2-pin terminal block so you can solder it to the output spot where the USB jack would go. Or don't solder any connectors in for a more compact power pack and go with 22AWG wires soldered directly in. Note: The terminal blocks included with your product may be blue or black. | 1/1 | |||
PowerBoost 1000 Charger - Rechargeable 5V Lipo USB Boost @ 1A - 1000C PowerBoost 1000C is the perfect power supply for your portable project! With a built-in load-sharing battery charger circuit, you'll be able to keep your power-hungry project running even while recharging the battery! This little DC/DC boost converter module can be powered by any 3.7V LiIon/LiPoly battery, and convert the battery output to 5.2V DC for running your 5V projects. If you dont need the 1A battery charger, smart load-sharing, or 1A iOS resistors, check out the Powerboost 500CLike our popular 5V 1A USB wall adapter, we tweaked the output to be 5.2V instead of a straight-up 5.0V so that there's a little bit of 'headroom' for long cables, high draw, the addition of a diode on the output if you wish, etc. The 5.2V is safe for all 5V-powered electronics like Arduino, Raspberry Pi, or Beagle Bone while preventing icky brown-outs during high current draw because of USB cable resistance. The PowerBoost 1000C has at the heart a TPS61090 boost converter from TI. This boost converter chip has some really nice extras such as low battery detection, 2A internal switch, synchronous conversion, excellent efficiency, and 700KHz high-frequency operation. Check out these specs! Synchronous operation means you can disconnect the output completely by connecting the ENable pin to ground. This will completely turn off the output 2A internal switch (~2.5A peak limiting) means you can get 1000mA+ from a 3.7V LiPoly/LiIon battery. Just make sure your battery can handle it! Low battery indicator LED lights up red when the voltage dips below 3.2V, optimized for LiPo/LiIon battery usage Onboard 1000mA charge-rate 'iOS' data resistors. Solder in the USB connector and you can plug in any iPad, iPhone or iPod for 1000mA charge rate. Full breakout for battery in, control pins and power out 90%+ operating efficiency in most cases (see datasheet for efficiency graphs), and low quiescent current: 5mA when enabled and power LED is on, 20uA when disabled (power and low batt LED are off) To make this even more useful, we stuck a smart load-sharing Lipoly charger on the other side. The charger circuitry is powered from a microUSB jack, and will recharge any 3.7V/4.2V LiIon or LiPoly battery at 1000mA max rate. There's two LEDs for monitoring the charge rate, a yellow one tells you its working, a green one lights up when its done. Since the built-in battery charger has load-sharing, it will automatically switch over to the USB power when available, instead of continuously charging/draining the battery. This is more efficient, and lets you charge-and-boost at the same time without any interruption on the output so its fine for use as a "UPS" (un-interruptable power supply). Just be aware that the charge rate is 1000mA max, and there's some inefficiency during the boosting stage, so make super sure that the USB adapter you're using to charge with is high quality, can supply 2A and has thick power wires. This one from Adafruit is ideal and has been tested, lower quality ones will not act well due to the voltage drop on the wires or droop on the power supply. This is especially true if you're actually drawing 1000mA out of the PowerBoost 1000C, the MCP73871 maxes out at 1.8A.You do have to always have a LiPo plugged into manage the load spikes, it's not optional! This charger-booster is great for powering your robot, Arduino project, single-board-computer such as Raspberry Pi or BeagleBone! Each order comes with one fully assembled and tested PCB and a loose USB A jack. If you are powering your project from USB, solder the USB A jack in (a 3-minute soldering task). If you would like to use a terminal block, pick up a 3.5mm 2pin block here and solder to the output spot where the USB jack would go. Or dont solder anything in for a more compact power pack. If you're trying to figure out how much current your project is using, check out the CHARGER DOCTOR! You may get an off-white or black JST connector. | 1/1 | |||
FriedCircuits USB Tester v2.0 USB has become the core of many projects, but it's troublesome to test USB voltage levels and current usage using a breadboard. Some people try to splice cables and alligator clip onto frayed ends, but it's difficult to get solid readings. This USB Tester will make it much easier to monitor any USB project's power source.As part of the USB spec, ports are limited to 500mA, so you want to monitor how close you are. Most people use USB hubs, both powered and unpowered, and with many devices connected, you can end up with less than 5V which can cause havoc on you projects. The USB Tester will make it a snap to monitor voltage levels and current usage without having to re-wire your breadboard. Just connect to your oscilloscope or DMM test leads, and you’re good to go! The USB Tester has both banana clip sized drills and standard 0.1” headers. When you are not testing current you can add a jumper for normal operation. The USB D+/D- pins are also broken out so you can monitor those on an oscilloscope, or for USB sniffing.Comes with an assembled PCB and a jumper. For more information on how to use, check out the product page. FriedCircuits USB Tester v1.3 (5:39) | 2/2 | |||
Bus Pirate - BPv3.6 - v3.6 Interfacing a new microchip can be a hassle. Breadboarding a circuit, writing code, hauling out the programmer, or maybe even prototyping a PCB. We never seem to get it right on the first try. The 'Bus Pirate' is a universal bus interface that talks to most chips from a PC serial terminal, eliminating a ton of early prototyping effort when working with new or unknown chips. Many serial protocols are supported at 0-5.5volts, more can be added. Adafruit is the official US distributor of Ian Lesnet's Bus Pirate, each purchase directly supports Dangerous Prototypes! You may also want to pick up a probe set. Protocols: 1-Wire, I2C, SPI, JTAG, asynchronous serial (UART), MIDI, PC keyboard, HD44780 LCDs, and generic 2- and 3-wire libraries for custom protocols. Features: USB interface, USB powered 0-5.5volt tolerant pins 0-6volt measurement probe 1Hz-40MHz frequency measurement 1kHz - 4MHz pulse-width modulator, frequency generator On-board multi-voltage pull-up resistors On-board 3.3volt and 5volt power supplies with software reset Macros for common operations Bus traffic sniffers (SPI, I2C) A bootloader for easy USB firmware updates Transparent USB->serial bridge mode 10Hz-1MHz low-speed logic analyzer Custom support in AVRDUDE, Flashrom AVR STK500 v2 programmer clone Scriptable from Perl, Python, etc. Translations (currently Spanish and Italian) | 1/1 | |||
Adafruit Pro Trinket - 5V 16MHz We still love the Pro Trinket but the bit-bang USB technique it uses doesn't work as well as it did in 2014. So while we still carry the Pro Trinket, we really recommend using the Metro Mini (ATmega328 @ 5V 16 MHz), ItsyBitsy 32u4 5V 16MHz, ItsyBitsy 32u4 @ 3.3V 8MHz or ItsyBitsy M0 @ 3V 48MHz. All have built-in USB and are comparable in price! The ItsyBitsy's especially are about the same size and have native USB and tons of pins, so they're a very close compatible. Trinket's got a big sister in town - the Pro Trinket 5V! Pro Trinket combines everything you love about Trinket with the familiarity of the common core Arduino chip, the ATmega328. It's like an Arduino Pro Mini with more pins and USB tossed in, so delicious. Trinket's a year old now, and while its been great to see tons of tiny projects, sometimes you just need more pins, more FLASH, and more RAM. That's why we designed Pro Trinket, with 18 GPIO, 2 extra analog inputs, 28K of flash, and 2K of RAM. Like the Trinket, it has onboard USB bootloading support - we opted for a MicroUSB jack this time. We also added Optiboot support, so you can either program your Pro Trinket over USB or with a FTDI cable just like the Pro Mini and friends. The Pro Trinket PCB measures only 1.5" x 0.7" x 0.2" (without headers) but packs much of the same capability as an Arduino UNO. So it's great once you've finished up a prototype on an official Arduino UNO and want to make the project smaller. The Pro Trinket 5V uses the Atmega328P chip, which is the same core chip in the Arduino UNO/Duemilanove/Mini/etc. at the same speed and voltage. So you'll be happy to hear that not only is Pro Trinket programmable using the Arduino IDE as you already set up, but 99% of Arduino projects will work out of the box! For tons more details, check out the Introducing Pro Trinket tutorial Here's some things you may have to consider when adapting Arduino sketches: Pins #2 and #7 are not available (they are exclusively for USB) The onboard 5V regulator can provide 150mA output, not 800mA out You cannot plug shields directly into the Pro Trinket There is no Serial-to-USB chip onboard. This is to keep the Pro Trinket small and inexpensive, you can use any FTDI cable to connect to the FTDI port for a Serial connection. The USB connection is for uploading new code only. The bootloader on the Pro Trinket use 4KB of FLASH so the maximum sketch size is 28,672 bytes. The bootloader does not affect RAM usage. Here's some handy specifications: ATmega328P onboad chip in QFN package 16MHz clock rate, 28K FLASH available USB bootloader with a nice LED indicator looks just like a USBtinyISP so you can program it with AVRdude and/or the Arduino IDE (with a few simple config modifications). Also has headers for an FTDI port for reprogramming Micro-USB jack for power and/or USB uploading, you can put it in a box or tape it up and use any USB cable for when you want to reprogram. On-board 5.0V power regulator with 150mA output capability and ultra-low dropout. Up to 16V input, reverse-polarity protection, thermal and current-limit protection. Power with either USB or external output (such as a battery) - it'll automatically switch over On-board green power LED and red pin #13 LED Reset button for entering the bootloader or restarting the program. Works with 99% of existing Arduino sketches (anything that doesn't use more than 28K, and doesn't require pins #2 and #7) Mounting holes! Yeah! Once headers are installed they can be fitted into 0.6" wide sockets | 2/2 | |||
Adafruit Trinket - Mini Microcontroller - 5V Logic As of October 9th, 2015 the 5V Trinket comes with a micro-USB connector instead of a mini-USB connector! Trinket may be small, but do not be fooled by its size! It's a tiny microcontroller board, built around the Atmel ATtiny85, a little chip with a lot of power. We wanted to design a microcontroller board that was small enough to fit into any project, and low cost enough to use without hesitation. Perfect for when you don't want to give up your expensive dev-board and you aren't willing to take apart the project you worked so hard to design. It's our lowest-cost arduino-IDE programmable board!The Attiny85 is a fun processor because despite being so small, it has 8K of flash, and 5 I/O pins, including analog inputs and PWM 'analog' outputs. We designed a USB bootloader so you can plug it into any computer and reprogram it over a USB port just like an Arduino. In fact we even made some simple modifications to the Arduino IDE so that it works like a mini-Arduino board. You can't stack a big shield on it but for many small & simple projects the Trinket will be your go-to platform.This is the 5V Trinket. There are two versions of the Trinket. One is 3V and one is 5V. Both work the same, but have different operating logic voltages. Use the 3V one to interface with sensors and devices that need 3V logic, or when you want to power it off of a LiPo battery. The 3V version should only run at 8 MHz. Use the 5V one for sensors and components that can use or require 5V logic. The 5V version can run at 8 MHz or at 16MHz by setting the software-set clock frequency.Even though you can program Trinket using the Arduino IDE, it's not a fully 100% Arduino-compatible. There are some things you trade off for such a small and low cost microcontroller! Trinket does not have a Serial port connection for debugging so the serial port monitor will not be able to send/receive data Some computers' USB v3 ports don't recognize the Trinket's bootloader. Simply use a USB v2 port or a USB hub in between Here are some useful specifications! ATtiny85 on-board, 8K of flash, 512 byte of SRAM, 512 bytes of EEPROM Internal oscillator runs at 8MHz, but can be doubled in software for 16MHz USB bootloader with a nice LED indicator looks just like a USBtinyISP so you can program it with AVRdude (with a simple config modification) and/or the Arduino IDE (with a few simple config modifications) Micro-USB jack for power and/or USB uploading, you can put it in a box or tape it up and use any USB cable for when you want to reprogram. We really worked hard on the bootloader process to make it rugged and foolproof, this board wont up and die on you in the middle of a project! ~5.25K bytes available for use (2.75K taken for the bootloader) Available in both 3V and 5V flavors On-board 3.3V or 5.0V power regulator with 150mA output capability and ultra-low dropout. Up to 16V input, reverse-polarity protection, thermal and current-limit protection. Power with either USB or external output (such as a battery) - it'll automatically switch over On-board green power LED and red pin #1 LED Reset button for entering the bootloader or restarting the program. No need to unplug/replug the board every time you want to reset or update! 5 GPIO - 2 shared with the USB interface. The 3 independent IO pins have 1 analog input and 2 PWM output as well. The 2 shared IO pins have 2 more analog inputs and one more PWM output. Hardware I2C / SPI capability for breakout & sensor interfacing. Works with many basic Arduino libraries including Adafruit Neopixel! Mounting holes! Yeah! Really really small For a lot more details, including a tour of the Trinket, pinout details and Arduino IDE examples, check out the Introducing Trinket tutorial | 5/5 | |||
Adafruit Trinket - Mini Microcontroller - 3.3V Logic - MicroUSB Trinket may be small, but do not be fooled by its size! It's a tiny microcontroller board, built around the Atmel ATtiny85, a little chip with a lot of power. We wanted to design a microcontroller board that was small enough to fit into any project, and low cost enough to use without hesitation. Perfect for when you don't want to give up your expensive dev-board and you aren't willing to take apart the project you worked so hard to design. It's our lowest-cost arduino-IDE programmable board! As of May 27th, 2015 the 3.3V Trinket has been revised! The board is now even smaller - at just 27mm x 15mm - and comes with a micro-B USB connector rather than mini-BThe Attiny85 is a fun processor because despite being so small, it has 8K of flash, and 5 I/O pins, including analog inputs and PWM 'analog' outputs. We designed a USB bootloader so you can plug it into any computer and reprogram it over a USB port just like an Arduino. In fact we even made some simple modifications to the Arduino IDE so that it works like a mini-Arduino board. You can't stack a big shield on it but for many small & simple projects the Trinket will be your go-to platform.This is the 3V Trinket. There are two versions of the Trinket. One is 3V and one is 5V. Both work the same, but have different operating logic voltages. Use the 3V one to interface with sensors and devices that need 3V logic, or when you want to power it off of a LiPo battery. The 3V version should only run at 8 MHz. Use the 5V one for sensors and components that can use or require 5V logic. The 5V version can run at 8 MHz or at 16MHz by setting the software-set clock frequency.Even though you can program Trinket using the Arduino IDE, it's not a fully 100% Arduino-compatible. There are some things you trade off for such a small and low cost microcontroller! Trinket does not have a Serial port connection for debugging so the serial port monitor will not be able to send/receive data Some computers' USB v3 ports don't recognize the Trinket's bootloader. Simply use a USB v2 port or a USB hub in between Here are some useful specifications! ATtiny85 on-board, 8K of flash, 512 byte of SRAM, 512 bytes of EEPROM Internal oscillator runs at 8MHz, but can be doubled in software for 16MHz USB bootloader with a nice LED indicator looks just like a USBtinyISP so you can program it with AVRdude (with a simple config modification) and/or the Arduino IDE (with a few simple config modifications) Micro-USB jack for power and/or USB uploading, you can put it in a box or tape it up and use any USB cable for when you want to reprogram. We really worked hard on the bootloader process to make it rugged and foolproof, this board wont up and die on you in the middle of a project! ~5.25K bytes available for use (2.75K taken for the bootloader) Available in both 3V and 5V flavors On-board 3.3V or 5.0V power regulator with 150mA output capability and ultra-low dropout. Up to 16V input, reverse-polarity protection, thermal and current-limit protection. Power with either USB or external output (such as a battery) - it'll automatically switch over On-board green power LED and red pin #1 LED Reset button for entering the bootloader or restarting the program. No need to unplug/replug the board every time you want to reset or update! 5 GPIO - 2 shared with the USB interface. The 3 independent IO pins have 1 analog input and 2 PWM output as well. The 2 shared IO pins have 2 more analog inputs and one more PWM output. Hardware I2C / SPI capability for breakout & sensor interfacing. Works with many basic Arduino libraries including Adafruit Neopixel! Mounting holes! Yeah! Really really small For a lot more details, including a tour of the Trinket, pinout details and Arduino IDE examples, check out the Introducing Trinket tutorial | 5/5 | |||
Particle Photon with Headers The Photon is a $19 tiny Wi-Fi development kit for creating connected projects and products for the Internet of Things. It's easy to use, it's powerful, and it's connected to the cloud. The tools that make up the Photon's ecosystem (and come along with the board) are designed to let you build and create whether you're an embedded engineer, web developer, Arduino enthusiast or IoT entrepreneur. You'll be able to write your firmware in our web or local IDE, deploy it over the air, and build your web and mobile apps with ParticleJS and our Mobile SDK. The board itself uses a Broadcom WICED Wi-Fi chip (one that can be found in Nest Protect, LIFX, and Amazon Dash) alongside a powerful STM32 ARM Cortex M3 microcontroller. It's like the Spark Core, but better! The WICED chipset is much faster than the original CC3000 in the 'Core and also supports SSL and Soft-AP mode. This is the Photon with breadboard headers connected. We also have the Photon without headers. If you're looking for a version with a breadboard and USB cable, click here for the Photon Starter Kit. | 1/1 | |||
USB XBee Adapter This low cost XBee USB Adapter Board comes in partially assembled kit form and provides a cost-effective solution to interfacing a PC or microcontroller to any XBee or XBee Pro module. The PC connection can be used to configure the XBee Module through Digi's X-CTU software. Works with XBee series 1 and 2 as well as Pro modules By using this adapter board you can provide an easy interface to the XBee or XBee Pro modules by converting the 2mm pin spacing to breadboard friendly 0.100" spacing. The adapter board also provides a means to connect pluggable wires or solder connections and also provides mounting holes. Note: This product from Parallax uses genuine FTDI chips 10/23/14 (read more). Features: Provides an easy interface to configure XBee Modules using Digi's X-CTU software Converts XBee 2mm pin spacing to 0.100" pin spacing 4 status indicator LEDs for Power, RSSI, Associate and mode (sleep/ON) Provides easy pluggable wire or solder connections Includes mounting holes Pin-out compatible with our other XBee Adapter boards Partially assembled kit form for flexible configuration Kit Contents: (1) XBee Adapter Board PCB (2) 10-pin 2mm sockets - these are soldered into the board. (1) 40-pin SIP header Tools Required: Soldering Iron Solder Flux Diagonal cutters or Exacto knife Key Specifications: Power requirements: 5.0V from USB or VDD pin, 3.3V generated on-board Communication: Serial pass-through to XBee module/USB to Host PC Dimensions: 1.51 x 1.00 x 0.58 in* (38.3 x 25.6 x 14.8 mm*) * when headers are attached Operating temp range: -40 to +158F (-40 to +70C) Works with all XBee & Pro modules! You'll need a USB cable with a mini-b connector on it to plug this into your computer! We have such an item in the shop, or you can look around the house, they're often used for digital cameras. | 1/1 | |||
SparkFun XBee Explorer USB This is a simple to use, USB to serial base unit for the Digi XBee line. This unit works with all XBee modules including the Series 1 and Series 2.5, standard and Pro version. Plug the unit into the XBee Explorer, attach a mini USB cable, and you will have direct access to the serial and programming pins on the XBee unit. The highlight of this board is an FT231X USB-to-Serial converter. That’s what translates data between your computer and the XBee. There’s also a reset button, and a voltage regulator to supply the XBee with plenty of power. In addition, there are four LEDs that’ll help if you ever need to debug your XBee: RX, TX, RSSI (signal-strength indicator), and power indicator. This board also breaks out each of the XBee’s I/O pins to a pair of breadboard-compatible headers. So if you want to make use of the XBee’s extended functionality, you can solder some header pins into those, or even just solder some wire. Not sure which XBee module or accessory is right for you? Check out our XBee Buying Guide! Note: There is no XBee included with this Explorer USB. Check the Recommended Products section below for different options. | 2/2 | |||
Adafruit Feather 32u4 Adalogger Feather is the new development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Adafruit Feather 32u4 Adalogger - our take on an 'all-in-one' datalogger (or data-reader) with built in USB and battery charging. Its an Adafruit Feather 32u4 with a microSD holder ready to rock! We have other boards in the Feather family, check'em out here At the Feather 32u4's heart is at ATmega32u4 clocked at 8 MHz and at 3.3V logic, a chip setup we've had tons of experience with as it's the same as the Flora. This chip has 32K of flash and 2K of RAM, with built in USB so not only does it have a USB-to-Serial program & debug capability built in with no need for an FTDI-like chip, it can also act like a mouse, keyboard, USB MIDI device, etc. To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available. We also tied the battery thru a divider to an analog pin, so you can measure and monitor the battery voltage to detect when you need a recharge. Here's some handy specs! Like all Feather 32u4's you get: Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in Light as a (large?) feather - 5.1 grams ATmega32u4 @ 8MHz with 3.3V logic/power 3.3V regulator with 500mA peak current output USB native support, comes with USB bootloader and serial port debugging You also get tons of pins - 20 GPIO pins Hardware Serial, hardware I2C, hardware SPI support 7 x PWM pins 10 x analog inputs Built in 100mA lipoly charger with charging status indicator LED Pin #13 red LED for general purpose blinking Power/enable pin 4 mounting holes Reset button The Feather 32u4 Adalogger uses the extra space left over to add MicroSD + a green LED: Pin #8 green LED for your blinking pleasure MicroSD card holder for adding as much storage as you could possibly want, for reading or writing. Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery, MicroSD card and USB cable not included (but we do have lots of options in the shop if you'd like!) Check out our tutorial for all sorts of details, including schematics, files, IDE instructions, and more! | 3/3 | |||
Adafruit Feather M0 WiFi with uFL - ATSAMD21 + ATWINC1500 - fw 19.4.4 Feather is the new development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Adafruit Feather M0 WiFi w/ATWINC1500 - our take on an 'all-in-one' Arduino-compatible + high speed, reliable WiFi with built in USB and battery charging. Its an Adafruit Feather M0 with a WiFi module, ready to rock! We have other boards in the Feather family, check'em out here. Connect your Feather to the Internet with this fine new FCC-certified WiFi module from Atmel. This 802.11bgn-capable WiFi module is the best new thing for networking your devices, with built-in low-power management capabilites, Soft-AP, SSL TLS 1.2 support and rock solid performance. We were running our adafruit.io MQTT demo for a full weekend straight with no hiccups (it would have run longer but we had to go to work, so we unplugged it). This module is very fast & easy to use in comparison to other WiFi modules we've used in the past. This module works with 802.11b, g, or n networks & supports WEP, WPA and WPA2 encryption. You can connect to your own WiFi networks or create your own with "Soft AP" mode, where it becomes its own access point (we have an example of it creating a webserver that you can then control the Arduino's pins). You can clock it as fast as 12MHz for speedy, reliable packet streaming. And scanning/connecting to networks is very fast, just a second or two. You might be wondering why use this when you can get a HUZZAH Feather? Well, you get: A highly-capable Cortex M0+ processor with ton more I/O pins, lots of 12-bit ADCs, a 10-bit DAC, 6 total SERCOMs that can each do SPI, I2C or UART (3 are used by the existing interfaces, leaving you 3), plenty of timers, PWMs, DMA, native USB, and more (check out the Datasheet) The ATWINC has much lower power usage, about 12mA for the WINC & 10mA for the ATSAMD21 with auto-powermanagement on for the WiFi and no power management for the ARM. With manual power management, you can get the WiFi module to down to ~2mA by putting it to sleep. This is compared to the ESP's ~70mA average current draw, and whose deep sleep mode requires a WDT reset. We also found that we could stream more reliably (less 'bursty') with the ATWINC, although altogether the ESP has higher throughput. You also dont have to 'yield' all the time to the WiFi core, since its a separate chip. You get full reign of the processor and timing Of course, both WiFi-capable Feathers have their strengths and tradeoffs, & we love both equally! At the Feather M0's heart is an ATSAMD21G18 ARM Cortex M0 processor, clocked at 48 MHz and at 3.3V logic, the same one used in the new Arduino Zero. This chip has a whopping 256K of FLASH (8x more than the Atmega328 or 32u4) and 32K of RAM (16x as much)! This chip comes with built in USB so it has USB-to-Serial program & debug capability built in with no need for an FTDI-like chip. For advanced users who are comfortable with ASF, the SWDIO/SWCLK pins are available on the bottom, and when connected to a CMSIS-DAP debugger can be used to use Atmel Studio for debugging. To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need to use a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available. We also tied the battery through a divider to an analog pin, so you can measure and monitor the battery voltage to detect when you need a recharge. Here's some handy specs! Like all Feather M0's you get: Measures 2.1" x 0.9" x 0.3" (53.65mm x 23mm x 8mm) without headers soldered in. Note it is 0.1" longer than most Feathers Light as a (large?) feather - 6.1 grams ATSAMD21G18 @ 48MHz with 3.3V logic/power 256KB FLASH, 32KB SRAM, No EEPROM 3.3V regulator (AP2112K-3.3) with 600mA peak current output, WiFi can draw 300mA peak during xmit USB native support, comes with USB bootloader and serial port debugging You also get tons of pins - 20 GPIO pins Hardware Serial, hardware I2C, hardware SPI support 8 x PWM pins 10 x analog inputs 1 x analog output Built in 200mA lipoly charger with charging status indicator LED Pin #13 red LED for general purpose blinking Power/enable pin 4 mounting holes Reset button Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery and MicroUSB cable not included (but we do have lots of options in the shop if you'd like!) Note: This version does not come with an onboard antenna, you will need a uFL connector antenna such as 2.4GHz Mini Flexible WiFi Antenna - not included! We have a version with on-board antenna as well Check out our tutorial for all sorts of details, including pinouts, power management, Arduino IDE setup and more! | 1/1 | |||
Adafruit Feather M0 with RFM95 LoRa Radio - 900MHz - RadioFruit This is the Adafruit Feather M0 RFM95 LoRa Radio (900MHz). We call these RadioFruits, our take on an microcontroller with a "Long Range (LoRa)" packet radio transceiver with built in USB and battery charging. Its an Adafruit Feather M0 with a 900MHz radio module cooked in! Great for making wireless networks that are more flexible than Bluetooth LE and without the high power requirements of WiFi. Feather is the new development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores.We have other boards in the Feather family, check'em out here. This is the 900 MHz radio version, which can be used for either 868MHz or 915MHz transmission/reception - the exact radio frequency is determined when you load the software since it can be tuned around dynamically. We also sell a 433MHz version of the same radio chipset! At the Feather M0's heart is an ATSAMD21G18 ARM Cortex M0 processor, clocked at 48 MHz and at 3.3V logic, the same one used in the new Arduino Zero. This chip has a whopping 256K of FLASH (8x more than the Atmega328 or 32u4) and 32K of RAM (16x as much)! This chip comes with built in USB so it has USB-to-Serial program & debug capability built in with no need for an FTDI-like chip. To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available. We also tied the battery thru a divider to an analog pin, so you can measure and monitor the battery voltage to detect when you need a recharge. Here's some handy specs! Like all Feather M0's you get: Measures 2.0" x 0.9" x 0.3" (51mm x 23mm x 8mm) without headers soldered in Light as a (large?) feather - 5.8 grams ATSAMD21G18 @ 48MHz with 3.3V logic/power No EEPROM 3.3V regulator with 500mA peak current output USB native support, comes with USB bootloader and serial port debugging You also get tons of pins - 20 GPIO pins Hardware Serial, hardware I2C, hardware SPI support 8 x PWM pins 10 x analog inputs 1 x analog output Built in 100mA lipoly charger with charging status indicator LED Pin #13 red LED for general purpose blinking Power/enable pin 4 mounting holes Reset button This Feather M0 LoRa Radio uses the extra space left over to add an RFM9x LoRa 868/915 MHz radio module. These radios are not good for transmitting audio or video, but they do work quite well for small data packet transmission when you need more range than 2.4 GHz (BT, BLE, WiFi, ZigBee). SX127x LoRa® based module with SPI interface Packet radio with ready-to-go Arduino libraries Uses the license-free ISM bands (ITU "Europe" @ 433MHz and ITU "Americas" @ 900MHz) +5 to +20 dBm up to 100 mW Power Output Capability (power output selectable in software) ~300uA during full sleep, ~120mA peak during +20dBm transmit, ~40mA during active radio listening. Simple wire antenna or spot for uFL connector Our initial tests with default library settings: over 1.2mi/2Km line-of-sight with wire quarter-wave antennas. (With setting tweaking and directional antennas, 20Km is possible). Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also toss in some headers so you can solder it in and plug into a solderless breadboard. You will need to cut and solder on a small piece of wire (any solid or stranded core is fine) in order to create your antenna. Lipoly battery and USB cable not included but we do have lots of options in the shop if you'd like! | 1/1 | |||
Adafruit Feather 32u4 Bluefruit LE Feather is the new development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Adafruit Feather 32u4 Bluefruit - our take on an 'all-in-one' Arduino-compatible + Bluetooth Low Energy with built in USB and battery charging. Its an Adafruit Feather 32u4 with a BTLE module, ready to rock! We have other boards in the Feather family, check'em out here. Bluetooth Low Energy is the hottest new low-power, 2.4GHz spectrum wireless protocol. In particular, its the only wireless protocol that you can use with iOS without needing special certification and it's supported by all modern smart phones. This makes it excellent for use in portable projects that will make use of an iOS or Android phone or tablet. It also is supported in Mac OS X and Windows 8+. We have quite a few BTLE-capable Feathers (it's a popular protocol!) so check out our BT Feather guide for some comparison information. At the Feather 32u4's heart is at ATmega32u4 clocked at 8 MHz and at 3.3V logic, a chip setup we've had tons of experience with as it's the same as the Flora. This chip has 32K of flash and 2K of RAM, with built in USB so not only does it have a USB-to-Serial program & debug capability built in with no need for an FTDI-like chip, it can also act like a mouse, keyboard, USB MIDI device, etc. To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available. We also tied the battery thru a divider to an analog pin, so you can measure and monitor the battery voltage to detect when you need a recharge. Here's some handy specs! Like all Feather 32u4's you get: Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in Light as a (large?) feather - 5.7 grams ATmega32u4 @ 8MHz with 3.3V logic/power 3.3V regulator with 500mA peak current output USB native support, comes with USB bootloader and serial port debugging You also get tons of pins - 20 GPIO pins Hardware Serial, hardware I2C, hardware SPI support 7 x PWM pins 10 x analog inputs Built in 100mA lipoly charger with charging status indicator LED Pin #13 red LED for general purpose blinking Power/enable pin 4 mounting holes Reset button The Feather 32u4 Bluefruit LE uses the extra space left over to add our excellent Bluefruit BTLE module + two status indicator LEDs. The Power of Bluefruit LE The Bluefruit LE module is an nRF51822 chipset from Nordic, programmed with multi-function code that can do quite a lot! For most people, they'll be very happy to use the standard Nordic UART RX/TX connection profile. In this profile, the Bluefruit acts as a data pipe, that can 'transparently' transmit back and forth from your iOS or Android device. You can use our iOS App or Android App, or write your own to communicate with the UART service. The board is capable of much more than just sending strings over the air! Thanks to an easy to learn AT command set, you have full control over how the device behaves, including the ability to define and manipulate your own GATT Services and Characteristics, or change the way that the device advertises itself for other Bluetooth Low Energy devices to see. You can also use the AT commands to query the die temperature, check the battery voltage, and more, check the connection RSSI or MAC address, and tons more. Really, way too long to list here! Use the Bluefruit App to get your project started Using our Bluefruit iOS App or Android App, you can quickly get your project prototyped by using your iOS or Android phone/tablet as a controller. We have a color picker, quaternion/accelerometer/gyro/magnetometer or location (GPS), and an 8-button control game pad. This data can be read over BLE and piped into the ATmega32u4 chip for processing & control You can do a lot more too! The Bluefruit can also act like an HID Keyboard (for devices that support BLE HID) Can become a BLE Heart Rate Monitor (a standard profile for BLE) - you just need to add the pulse-detection circuitry Turn it into a UriBeacon, the Google standard for Bluetooth LE beacons. Just power it and the 'Friend will bleep out a URL to any nearby devices with the UriBeacon app installed. Built in over-the-air bootloading capability so we can keep you updated with the hottest new firmware. Use any Android or iOS device to get updates and install them. This will update the native code on the BLE module, to add new wireless capabilities, not program the ATmega chip. Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery and MicroUSB cable not included (but we do have lots of options in the shop if you'd like!) Check out our tutorial for all sorts of details, including schematics, files, IDE instructions, and more! | 0/1 | |||
Adafruit Feather M0 Bluefruit LE Feather is the new development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Adafruit Feather M0 Bluefruit LE - our take on an 'all-in-one' Arduino-compatible + Bluetooth Low Energy with built in USB and battery charging. It's an Adafruit Feather M0 with a BTLE module, ready to rock! We have other boards in the Feather family, check'em out here. Bluetooth Low Energy is a hot, low-power, 2.4GHz spectrum wireless protocol. In particular, it's the only wireless protocol that you can use with iOS without needing special certification, and it's supported by all modern smart phones. This makes it excellent for use in portable projects that will make use of an iOS or Android phone or tablet. It also is supported in Mac OS X and Windows 8+. We have quite a few BTLE-capable Feathers (it's a popular protocol!) so check out our BT Feather guide for some comparison information. At the Feather M0's heart is an ATSAMD21G18 ARM Cortex M0 processor, clocked at 48 MHz and at 3.3V logic, the same one used in the new Arduino Zero. This chip has a whopping 256K of FLASH (8x more than the Atmega328 or 32u4) and 32K of RAM (16x as much)! This chip comes with built in USB so it has USB-to-Serial program & debug capability built in with no need for an FTDI-like chip. To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available. We also tied the battery thru a divider to an analog pin, so you can measure and monitor the battery voltage to detect when you need a recharge. Here's some handy specs! Like all Feather M0's you get: Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in Light as a (large?) feather - 5.7 grams ATSAMD21G18 @ 48MHz with 3.3V logic/power No EEPROM 3.3V regulator with 500mA peak current output USB native support, comes with USB bootloader and serial port debugging You also get tons of pins - 20 GPIO pins Hardware Serial, hardware I2C, hardware SPI support 8 x PWM pins 10 x analog inputs 1 x analog output Built in 100mA lipoly charger with charging status indicator LED Pin #13 red LED for general purpose blinking Power/enable pin 4 mounting holes Reset button The Feather M0 Bluefruit LE uses the extra space left over to add our excellent Bluefruit BTLE module + two status indicator LEDs. The Power of Bluefruit LE The Bluefruit LE module is an nRF51822 chipset from Nordic, programmed with multi-function code that can do quite a lot! For most people, they'll be very happy to use the standard Nordic UART RX/TX connection profile. In this profile, the Bluefruit acts as a data pipe, that can 'transparently' transmit back and forth from your iOS or Android device. You can use our iOS App or Android App, or write your own to communicate with the UART service. The board is capable of much more than just sending strings over the air! Thanks to an easy to learn AT command set, you have full control over how the device behaves, including the ability to define and manipulate your own GATT Services and Characteristics, or change the way that the device advertises itself for other Bluetooth Low Energy devices to see. You can also use the AT commands to query the die temperature, check the battery voltage, and more, check the connection RSSI or MAC address, and tons more. Really, way too long to list here! Use the Bluefruit App to get your project started Using our Bluefruit iOS App or Android App, you can quickly get your project prototyped by using your iOS or Android phone/tablet as a controller. We have a color picker, quaternion/accelerometer/gyro/magnetometer or location (GPS), and an 8-button control game pad. This data can be read over BLE and piped into the ATSAMD21G18 chip for processing & control You can do a lot more too! The Bluefruit can also act like an HID Keyboard (for devices that support BLE HID) Can become a BLE Heart Rate Monitor (a standard profile for BLE) - you just need to add the pulse-detection circuitry Turn it into a UriBeacon, the Google standard for Bluetooth LE beacons. Just power it and the 'Friend will bleep out a URL to any nearby devices with the UriBeacon app installed. Built in over-the-air bootloading capability so we can keep you updated with the hottest new firmware. Use any Android or iOS device to get updates and install them. This will update the native code on the BLE module, to add new wireless capabilities, not program the ATmega chip. Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery and MicroUSB cable not included (but we do have lots of options in the shop if you'd like!) Check out our tutorial for all sorts of details, including schematics, files, IDE instructions, and more! | 0/2 | |||
Adafruit Feather M0 Adalogger Feather is the new development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Adafruit Feather M0 Adalogger - our take on an 'all-in-one' Cortex M0 datalogger (or data-reader) with built in USB and battery charging. Its an Adafruit Feather M0 with a microSD holder ready to rock! We have other boards in the Feather family, check'em out here At the Feather M0's heart is an ATSAMD21G18 ARM Cortex M0 processor, clocked at 48 MHz and at 3.3V logic, the same one used in the new Arduino Zero. This chip has a whopping 256K of FLASH (8x more than the Atmega328 or 32u4) and 32K of RAM (16x as much)! This chip comes with built in USB so it has USB-to-Serial program & debug capability built in with no need for an FTDI-like chip. To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch over to USB power when its available. We also tied the battery thru a divider to an analog pin, so you can measure and monitor the battery voltage to detect when you need a recharge. Here's some handy specs! Like all Feather M0's you get: Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in Light as a (large?) feather - 5.3 grams ATSAMD21G18 @ 48MHz with 3.3V logic/power 256KB of FLASH + 32KB of RAM No EEPROM 3.3V regulator with 500mA peak current output USB native support, comes with USB bootloader and serial port debugging You also get tons of pins - 20 GPIO pins Hardware Serial, hardware I2C, hardware SPI support 8 x PWM pins 10 x analog inputs Built in 100mA lipoly charger with charging status indicator LED Pin #13 red LED for general purpose blinking Power/enable pin 4 mounting holes Reset button The Feather M0 Adalogger uses the extra space left over to add MicroSD + a green LED: Pin #8 green LED for your blinking pleasure MicroSD card holder for adding as much storage as you could possibly want, for reading or writing. Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery, MicroSD card and USB cable not included (but we do have lots of options in the shop if you'd like!) Check out our tutorial for all sorts of details, including schematics, files, IDE instructions, and more! | 1/1 | |||
Adafruit Ethernet FeatherWing Wireless is wonderful, but sometimes you want the strong reliability of a wire. If your Feather board is going to be part of a permanent installation, this Ethernet FeatherWing will let you add quick and easy wired Internet. Just plug in a standard ethernet cable, and run the Ethernet2 library for cross-platform networking. Works with all/any of our Feather boards! Ethernet is a tried-and-true networking standard. It's supported by every hub and switch, and because there's a physical connection you don't have to noodle around with SSIDs, passwords, authentication schemes or antennas. It works great with any of our Feathers, the WIZ5500 chip communicates over SPI plus a single CS pin. The Arduino Ethernet2 library works great, and within a few seconds after connecting, will do the DHCP setup for you. As a nice extra, the RJ-45 jack has both link and activity lights that will light/blink to let you know the current connection status. Note this product does not have PoE support, but you can add it by the addition of a PoE splitter. We have a version that provides 5V at 2.4 Amp max into a micro USB connector just plug in your Feather to be powered over the micro USB connection. Each order comes with one assembled and tested FeatherWing, plus some header. You will need to solder in the header yourself but its a quick task. Check out our tutorial for code, schematics, files and more! | 1/1 | |||
SparkFun MicroView - USB Programmer The MicroView is the first chip-sized Arduino compatible module that lets you see what your Arduino is thinking using a built-in OLED display. This USB programmer connects directly to the MicroView and lets you not only program the module, but use it to interface with your computer, Rapsberry Pi, or other USB device. The programmer has both male and female headers which allow it to be plugged into a MicroView module and a breadboard at the same time, making prototyping quick and easy. If you want to learn more about the MicroView, check out the Kickstarter page. Note: A MicroView OLED Arduino Module is NOT included with this USB Programmer. Check the Recommended Products section below to find one! | 2/2 | |||
Teensy 3.2 + header Teensy 3.2 is a small, breadboard-friendly development board designed by Paul Stoffregen and PJRC. Teensy 3.2 brings a low-cost 32 bit ARM Cortex-M4 platform to hobbyists, students and engineers, using an adapted version of the Arduino IDE (Teensyduino) or programming directly in C language. Teensy 3.2 is an upgrade over 3.1! Teensy 3.2 is a drop-in replacement upgrade for 3.1 and can run any sketches designed for 3.1. This latest version of this complete USB-based microcontoller development system now adds a more powerful 3.3V regulator, as well as accepts a wider voltage input range. This board has the same size, shape and pinout as well as full compatibility with all shields and add-on boards made for the Teensy 3.1, plus double the Flash memory as the Teensy 3.0. Let's get started! Please note: Teensy 3 and 2 are not official Arduino-brand products. Although the Teensyduino IDE has been adapted so that many simple Arduino projects will work with the Teensy, there will still be a lot of libraries and shields that will not work with this device! If you're new to microcontrollers, we suggest going with a classic Arduino UNO since all Arduino projects, examples and libraries will work with it. Once headers are installed they can be fitted into 0.6" wide socketsTechnical Specifications: 32 bit ARM Cortex-M4 72MHz CPU (M4 = DSP extensions) Here is Freescale's reference manual for the chip (warning 1227 pages) as well as the Datasheet and User Guide! 256K Flash Memory, 64K RAM, 2K EEPROM 21* High Resolution Analog Inputs (13 bits usable, 16 bit hardware) 34* Digital I/O Pins (21 shared with analog) 12 PWM outputs 1 12-bit DAC output 8 Timers for intervals/delays, separate from PWM USB with dedicated DMA memory transfers CAN bus 3 UARTs (serial ports) SPI, I2C, I2S, IR modulator I2S (for high quality audio interface) Real Time Clock (with user-added 32.768 crystal and battery) 16 general purpose DMA channels (separate from USB) Touch Sensor Inputs Information, documentation and specs are on the Teensy site. Please check it out for more details! | 1/1 | |||
Teensy 3.5 without headers The awesome new Teensy 3.5 is a small, breadboard-friendly development board designed by Paul Stoffregen and PJRC. Teensy 3.5 brings a low-cost 32-bit ARM Cortex-M4 platform to hobbyists, students and engineers, using an adapted version of the Arduino IDE (Teensyduino) or programming directly in C language. Teensy 3.5 is an upgrade over 3.2, for when you need even more power! Version 3.5 features a 32 bit 120 MHz ARM Cortex-M4 processor with floating point unit. All digital pins are 5 volt tolerant. The unique specs for the 3.5 are: 120 MHz ARM Cortex-M4 with Floating Point Unit 512K Flash, 192K RAM, 4K EEPROM Microcontroller Chip MK64FX512VMD12 (PDF link) 1 CAN Bus Port 16 General Purpose DMA Channels 5 Volt Tolerance On All Digital I/O Pins The latest in the line of very powerful, USB-capable microcontrollers, the Teensy 3.5 and 3.6 development boards are faster, more capable, and bigger, putting even more pins on a solderless breadboard. Teensy 3.5 offers a little bit less in its features (MCU, RAM, Flash, clock and some peripherals) which makes it slightly cheaper than Teensy 3.6. Teensy 3.5 has 5V tolerance on all digital I/O pins. Only Teensy 3.6 has a USB High Speed (480 Mbit/sec) port accessed using 5 pins on the board. Please note: Teensy 3 boards are not official Arduino-brand products. Although the Teensyduino IDE has been adapted so that many Arduino projects will work with the Teensy, there will still be a lot of libraries and shields that may not work with this device! If you're new to microcontrollers, we suggest going with a classic Arduino UNO since all Arduino projects, examples and libraries will work with it.More Specifications, Details & Features: 62 I/O Pins (42 breadboard friendly) 25 Analog Inputs to 2 ADCs with 13 bits resolution 2 Analog Outputs (DACs) with 12 bit resolution 20 PWM Outputs (Teensy 3.6 has 22 PWM) USB Full Speed (12 Mbit/sec) Port Ethernet mac, capable of full 100 Mbit/sec speed Native (4 bit SDIO) micro SD card port I2S Audio Port, 4 Channel Digital Audio Input & Output 14 Hardware Timers Cryptographic Acceleration Unit Random Number Generator CRC Computation Unit 6 Serial Ports (2 with FIFO & Fast Baud Rates) 3 SPI Ports (1 with FIFO) 3 I2C Ports (Teensy 3.6 has a 4th I2C port) Real Time Clock Information, documentation and specs are on the Teensy site. Please check it out for more details! | 1/1 | |||
Teensy 3.6 without headers The awesome new Teensy 3.6 is a small, breadboard-friendly development board designed by Paul Stoffregen and PJRC. Teensy 3.6 brings a low-cost 32-bit ARM Cortex-M4 platform to hobbyists, students and engineers, using an adapted version of the Arduino IDE (Teensyduino) or programming directly in C language. Teensy 3.6 is an upgrade over 3.2 and 3.5, for when you need even more power! Version 3.6 features a 32 bit 180 MHz ARM Cortex-M4 processor with floating point unit. All digital and analog pins are 3.3 volts. Do not apply more than 3.3V to any signal pin. The unique specs for the 3.6 are: 180 MHz ARM Cortex-M4 with Floating Point Unit 1M Flash, 256K RAM, 4K EEPROM Microcontroller Chip MK66FX1M0VMD18 (PDF link) USB High Speed (480 Mbit/sec) Port 2 CAN Bus Ports 32 General Purpose DMA Channels 22 PWM Outputs 4 I2C Ports 11 Touch Sensing Inputs The latest in the line of very powerful, USB-capable microcontrollers, the Teensy 3.5 and 3.6 development boards are faster, more capable, and bigger, putting even more pins on a solderless breadboard. Teensy 3.6 offers a little bit more in its features (MCU, RAM, Flash, clock and some peripherals) than Teensy 3.5, and only the 3.6 has a USB High Speed (480 Mbit/sec) port accessed using 5 pins on the board. Please note: Teensy 3 boards are not official Arduino-brand products. Although the Teensyduino IDE has been adapted so that many Arduino projects will work with the Teensy, there will still be a lot of libraries and shields that may not work with this device! If you're new to microcontrollers, we suggest going with a classic Arduino UNO since all Arduino projects, examples and libraries will work with it.More Specifications, Details & Features: 62 I/O Pins (42 breadboard friendly) 25 Analog Inputs to 2 ADCs with 13 bits resolution 2 Analog Outputs (DACs) with 12 bit resolution 20 PWM Outputs (Teensy 3.6 has 22 PWM) USB Full Speed (12 Mbit/sec) Port Ethernet mac, capable of full 100 Mbit/sec speed Native (4 bit SDIO) micro SD card port I2S Audio Port, 4 Channel Digital Audio Input & Output 14 Hardware Timers Cryptographic Acceleration Unit Random Number Generator CRC Computation Unit 6 Serial Ports (2 with FIFO & Fast Baud Rates) 3 SPI Ports (1 with FIFO) 3 I2C Ports (Teensy 3.6 has a 4th I2C port) Real Time Clock Information, documentation and specs are on the Teensy site. Please check it out for more details! | 1/2 | |||
Teensy 3.1 The Teensy is a breadboard-friendly development board with loads of features in a, well, teensy package. Each Teensy 3.1 comes pre-flashed with a bootloader so you can program it using the on-board USB connection: No external programmer needed! You can program for the Teensy in your favorite program editor using C or you can install the Teensyduino add-on for the Arduino IDE and write Arduino sketches for Teensy! The processor on the Teensy also has access to the USB and can emulate any kind of USB device you need it to be, making it great for USB-MIDI and other HID projects. The 32 bit processor brings a few other features to the table as well, such as multiple channels of Direct Memory Access, several high-resolution ADCs and even an I2S digital audio interface! There are also 4 separate interval timers plus a delay timer! Oh yeah, and all pins have interrupt capability. Also, it can provide system voltage of 3.3V to other devices at up to 250mA. All of this functionality is jammed into a 1.4 x 0.7 inch board with all headers on a 0.1" grid so you can slap in on a breadboard and get to work! The Teensy 3.2 adds a more powerful 3.3 volt regulator, with the ability to directly power an ESP8266 Wifi, WIZ820io Ethernet, and other 3.3V add-on boards that require a little more power. Additionally, if it is used within the Teensy 3.1 limits of operation, the Teensy 3.2 and 3.1 are interchangeable! Note: This does not come with a USB cable, please check below for an appropriate one. Features 32 bit ARM Cortex-M4 72 MHz CPU (M4 = DSP extensions) 256K Flash Memory, 64K RAM, 2K EEPROM 21 High Resolution Analog Inputs (13 bits usable, 16 bit hardware) 34 Digital I/O Pins (5V tolerance on Digital Inputs) 12 PWM outputs 7 Timers for intervals/delays, separate from PWM USB with dedicated DMA memory transfers 3 UARTs (serial ports) SPI, I2C, I2S,CAN Bus, IR modulator I2S (for high quality audio interface) Real Time Clock (with user-added 32.768 crystal and battery) 16 DMA channels (separate from USB) Touch Sensor Inputs 1.4 x 0.7" (~35 x 18 mm) | 1/1 | |||
Adafruit PiUART - USB Console and Power Add-on for Raspberry Pi Here's another super handy add-on for your Raspberry Pi computer, perfect for 'head-less' setups! The PiUART adds a MicroUSB to serial connection so you can use any serial port software to connect to the Pi's console. It plugs in and is fast and easy to add whenever you need to connect to your Pi. Two LEDs connect to RX and TX on the serial converter chip so you get blinking whenever data is sent or received. We had some space left over, so the PiUART also comes with an on-off switch with a 4 Amp transistor. You can power your Pi through the microUSB port and then use the switch whenever you want to cut power, without having to unplug the cable. Low-power usage Pi's like the Pi Zero and A+ can thus be powered and controlled from a single cable connected to your computer. Heavy-hitter Pi's like the Pi 2 and Pi 3 may draw too much power from a computer USB port, so check if your motherboard has a high-current USB port before trying. Comes fully assembled and ready to go, plug into your Pi, and on Mac OS X install the driver - within 2 minutes and you'll be ready to go. Works with any Raspberry Pi computer (Pi 1, 2, 3, Zero, etc) | 1/1 | |||
Adafruit USB + Serial LCD Backpack Add-On with Cable Adding a character display to your project or computer has never been easier with the new Adafruit USB or TTL serial backpack! This custom-designed PCB can connect to the back of any 16x2 or 20x4 character LCD and does everything you could want: printing text, automatic scrolling, setting the backlight, adjusting contrast, making custom characters, turning on and off the cursor, etc. It can even handle our RGB backlight LCDs with full 8-bit PWM control of the backlight. That means you can change the background color to anything you want - red, green, blue, pink, white, purple yellow, teal, salmon, chartreuse, or just leave it off for a neutral background. On non-RGB backlights you'll be able to dim the backlight (it's on the same pin as the 'Red' LED) Inside this backpack is an USB-capable AT90USB162 chip that listens for commands both a mini-B USB port and a TTL serial input wire. The USB interface shows up as a COM/serial port on Windows/Mac/Linux. The backpack will automatically select data from whichever input is being used. For the USB connection, it will work at any baud rate. For the TTL connection, the default baud rate is 9600 but you can send it a command to set the baud rate to 2400, 4800, 9600, 19200, 28800, or 57600 baud. (The baud rate is flashed on the LCD during powerup). Any customizations such as baud rate, backlight color, brightness, splash screen, etc. are stored permanently EEPROM.The command interface is compatible with the popular "Matrix Orbital" specifications so this backpack will work perfectly with computer applications or libraries that are expecting a "Matrix" LCD such as "LCD Smartie". We added a few extra commands for the RGB backlight and setting the LCD size. If you don't want to use the commands, you can just start sending ASCII to the LCD and it will magically appear as typed. Does not include an LCD module! You'll need to pick out an LCD from the shop and solder it on the back. | 1/1 | |||
Adafruit CP2104 Friend - USB to Serial Converter Long gone are the days of parallel ports and serial ports. Now the USB port reigns supreme! But USB is hard, and you just want to transfer your every-day serial data from a microcontroller to computer. What now? Enter the Adafruit CP2104 Friend! This is a high-quality CP2104 USB-Serial chip that can upload code at a blistering 2Mbit/s for fast development time. It also has auto-reset for Arduino/ATmega328 boards so no noodling with pins and reset button pressings. The CP2104 has better driver support than the CH340 and can do very high speeds, and variable speeds without stability issues. Compared to the FT232RL and FT231X, the CP2104 has the same capabilities or better, at a great price! It even has the RX/TX LEDs to help you debug your data, they'll blink when the chip receives/transmits data. By default, we've set it up so that it matches our FTDI cables. The 6th pin is RTS, the power wire is +5V and the signal levels are 3.3V (they are 5V compliant, and should work in the vast majority of 3.3V and 5V signal systems). Works excellently with any Arduino, ESP8266, ESP32 or any other microcontroller that uses an 'FTDI port' for communications and upload. You can also purchase a 6-pin extension cable from us, which will let you rearrange the wire order. There's also a full collection of all the modem control pins you may need on the side, in case you need the DTR, RI, DSR, etc. pins. Each order comes with a fully assembled and tested board. We give you a right-angle socket header and some male header strip. You can solder in the socket header on the edge to make it 'FTDI-like' or solder the male headers in to plug it into a breadboard and get access to all the pins. For Linux you won't need a driver. For Windows, it will automatically grab the driver from Windows Update. For Mac OS X you can check out SiLabs driver page for the latest and greatest. | 1/1 | |||
FadeCandy - Dithering USB-Controlled Driver for RGB NeoPixels A new collaboration between Adafruit & Micah from Scanlime, we are excited to introduce Fadecandy, a NeoPixel driver with built in dithering, that can be controlled over USB. Fadecandy is not just hardware! It is a kit of both hardware and software parts that make LED art projects easier to build and better-looking so sculptors and makers and multimedia artists can concentrate on beautiful things instead of reinventing the wheel. It's an easy way to get started and an advanced tool for professionals. It's a collection of simple parts that work well together: Firmware that uses unique dithering and color correction algorithms to raise the bar for quality while getting out of the way of your creativity. Open source hardware for connecting cheap and popular WS2811 based LEDs to a laptop, desktop, or Raspberry Pi over USB. Fadecandy Server Software, which communicates with one Fadecandy board or dozens. It runs on Windows, Linux, and Mac OS, and on embedded platforms like Raspberry Pi. The Open Pixel Control protocol, a simple way of getting pixel data from your creative tools into the Fadecandy server. Libraries and examples for popular languages. We have Python and Processing already, with Javascript and Max coming soon. LEDs! Fadecandy works with Adafruit's popular WS2811/WS2812 LEDs. Each controller board supports up to 512 LEDs, arranged as 8 strips of 64 each. Not for use with RGBW NeoPixels, you can only use RGB type at this time. Headers are not included but we have tons of different kinds of dual header in the shop if you want to solder something into the pads.Fadecandy is designed to enable art that is subtle, interactive, and playful - exploring the interplay between light, form, and shadow. If you’re tired of seeing project after project with frenetic blinky rainbow fades, you’ll appreciate how easy it is to create expressive lighting!It's also battle tested! The firmware was originally developed to run the Ardent Mobile Cloud Platform, a Burning Man project which used 2500 LEDs to project ever-changing rolling cloud patterns onto the interior of a translucent plastic sculpture. It used five Fadecandy boards, a single Raspberry Pi, and the effects were written in a mixture of C and Python. The lighting on this project blew people away, and it made me realize just how much potential there is for creative lighting, but it takes significant technical drudgery to get beyond frenetic-rainbow-fade into territory where the lighting can really add to an art piece instead of distracting from it. How it's made - Ladyada and Micah Scott manufacturing Fadecandy at Adafruit. FadeCandy - Dithering USB-Controlled Driver for NeoPixels (18:41) | 3/3 | |||
Espruino Pico Control Electronics quickly and easily with a tiny USB stick that runs JavaScript - introducing the Espruino Pico! Dig in to the JavaScript of things, with a mini version of the popular Espruino board we already carry This little board has an STM32 microcontroller pre-programmed with Espruino all ready to go so you can start playing immediately. Warning: if you only use Assembly and think that even embedded C/C++ is for wimps, this device might explody your head. Essential Features: 22 GPIO pins: 9 analog inputs, 21 PWM, 2 serial, 3 SPI, 3 I2C All GPIO is 3.3V but 5 volt tolerant 2 rows of 9 0.1" pins, with a third 0.05" row of 8 pins on the end On-board USB "PCB Type" connector, plugs right into any computer USB port Two on-board LEDs and one button STM32F401CDU6 CPU - ARM Cortex On-board 3.3v 250mA voltage regulator, accepts voltages from 3.5v to 16v Current draw in sleep: < 0.05mA - over 2.5 years on a 2500mAh battery On-board FET can be used to drive high-current outputs Note: As of Friday, October 2nd, 2015 we are selling the updated Pico with both a more helpful silkscreen marking for power, an updated USB power diode, and a 500mA polyfuse added! The Espruino Pico is a USB stick with a tiny computer and JavaScript interpreter built in, allowing for instant feedback from whatever device you're working with. Simply set up your code with the Espruino and send it to the device without having to wait for the board to 'flash.' The Pico is also designed to be easy to include in your own designs and builds. The .01" pins are easy to fit in to sockets, and castellated edges mean that unpinned Picos can easily be surface-mounted directly to a PCB. And to make it even easier, Espruino provided a part library for Eagle CAD that includes the Pico's footprint in several different configurations.The Espruino Pico's fast response time has a lot of advantages. It allows for quick and easy debugging and is a great way to test your project before your big reveal. In addition, you can control the Espruino from almost anything - Windows, Mac OS, Linux, RasPi, Android, anything that can talk to a USB Serial port.The Espruino family also interacts well with our NeoPixels. For more info, check out Espruino's page on the WS2811 and WS2812.While the main advantage of the Espruino is its instant execution, it can also be used as a traditional board through a Web-based IDE hosted on your computer. The microcontroller also uses less power than Linux Boards (although its of course a lot less powerful as well) so will run longer on battery power, it has loads of IO pins, and it can be used as an IO board for PCs, Macs, or Rasp Pis without having to program it first. Simply take the Espruino out of its packaging and get started! There's also much more info on the Espruino Pico page including tutorials, code examples, manuals, datasheets, and more! | 5/5 | |||
SparkFun Bluetooth and LiPo Add-On for Makey Makey The MaKey MaKey is really cool, but wouldn’t it be cooler if it wasn’t tethered to your computer? There’s only one way to find out: Go wireless. Our Bluetooth & LiPo Add-On for MaKey MaKey frees your MaKey invention from the bonds of USB wired connection. Data is passed over a Bluetooth HID connection to your Bluetooth enabled computer which will recognize it as a Bluetooth wireless keyboard. Power is handled through a 2-pin JST connector, simply connect any of our 3.7V lithium-polymer batteries. If the MaKey MaKey is plugged in using USB, the Bluetooth & LiPo Add-On will use that source to charge any connected LiPo battery! To get this thing up and running, you will need to upload some special code to your MaKey MaKey so some Arduino knowledge is recommended. Check out the wiki below for more information. Note: This Add-On board does not include a LiPo battery, check the related items below for compatible batteries! If your computer doesn’t have Bluetooth, no worries, check out the Bluetooth USB Module in the related items! | 1/1 | |||
Micro Maestro 6-Channel USB Servo Controller (Assembled) The six-channel Micro Maestro raises the performance bar for serial servo controllers with features such as a native USB interface and internal scripting control. Whether you want high-performance servo control (0.25μs resolution with built-in speed and acceleration control) or a general I/O controller (e.g. to interface with a sensor or ESC via your USB port), this tiny, versatile device will deliver. The fully assembled version ships with header pins installed. For a full list of products shown in this video, see the blog post. The Micro Maestro is the smallest of Pololu’s second-generation USB servo controllers. The Maestros are available in four sizes and can be purchased fully assembled or as partial kits: Maestro family of USB servo controllers: Mini 24, Mini 18, Mini 12, and Micro 6. Micro Maestro — fully assembled Micro Maestro — partial kit Mini Maestro 12 — fully assembled Mini Maestro 12 — partial kit Mini Maestro 18 — fully assembled Mini Maestro 18 — partial kit Mini Maestro 24 — fully assembled Mini Maestro 24 — partial kit The Mini Maestros offer higher channel counts and some additional features (see the Maestro comparison table below for details). Micro Maestro 6-channel USB servo controller bottom view with quarter for size reference. The Micro Maestro is a highly versatile servo controller and general-purpose I/O board in a highly compact (0.85"×1.20") package. It supports three control methods: USB for direct connection to a computer, TTL serial for use with embedded systems, and internal scripting for self-contained, host controller-free applications. The channels can be configured as servo outputs for use with radio control (RC) servos or electronic speed controls (ESCs), as digital outputs, or as analog inputs. The extremely precise, high-resolution servo pulses have a jitter of less than 200 ns, making these servo controllers well suited for high-performance applications such as robotics and animatronics, and built-in speed and acceleration control for each channel make it easy to achieve smooth, seamless movements without requiring the control source to constantly compute and stream intermediate position updates to the Micro Maestro. Units can be daisy-chained with additional Pololu servo and motor controllers on a single serial line. A free configuration and control program is available for Windows and Linux, making it simple to configure and test the device over USB, create sequences of servo movements for animatronics or walking robots, and write, step through, and run scripts stored in the servo controller. The Micro Maestro’s 1 KB of internal script memory allows storage of servo positions that can be automatically played back without any computer or external microcontroller connected. Because the Micro Maestro’s channels can also be used as general-purpose digital outputs and analog inputs, they provide an easy way to read sensors and control peripherals directly from a PC over USB, and these channels can be used with the scripting system to enable creation of self-contained animatronic displays that respond to external stimuli and trigger additional events beyond just moving servos. Bottom view with dimensions (in inches) of Pololu Micro and Mini Maestro servo controllers. The Micro Maestro is available fully assembled with 0.1″ male header pins installed as shown in the product picture or as a partial kit, which ship with these header pins included but unsoldered, allowing the use of different gender connectors or wires to be soldered directly to the pads for lighter, more compact installations. The Mini Maestro 12, 18, and 24 are also available fully assembled or as partial kits. A USB A to mini-B cable (not included) is required to connect this device to a computer. The Micro and Mini Maestros have 0.086″ diameter mounting holes that work with #2 and M2 screws. Micro Maestro 6-channel USB servo controller assembled. Micro Maestro 6-channel USB servo controller partial kit. Three control methods: USB, TTL (5V) serial, and internal scripting 0.25μs output pulse width resolution (corresponds to approximately 0.025° for a typical servo, which is beyond what the servo could resolve) Pulse rate configurable from 33 to 100 Hz (2) Wide pulse range of 64 to 3280 μs (2) Individual speed and acceleration control for each channel Channels can be optionally configured to go to a specified position or turn off on startup or error Channels can also be used as general-purpose digital outputs or analog inputs A simple scripting language lets you program the controller to perform complex actions even after its USB and serial connections are removed Comprehensive user’s guide Free configuration and control application for Windows makes it easy to: Configure and test your controller Create, run, and save sequences of servo movements for animatronics and walking robots Write, step through, and run scripts stored in the servo controller Configure and test your controller Create, run, and save sequences of servo movements for animatronics and walking robots Write, step through, and run scripts stored in the servo controller Two ways to write software to control the Maestro from a PC: Virtual COM port makes it easy to send serial commands from any development environment that supports serial communication Pololu USB Software Development Kit allows use of more advanced native USB commands and includes example code in C#, Visual Basic .NET, and Visual C++ Virtual COM port makes it easy to send serial commands from any development environment that supports serial communication Pololu USB Software Development Kit allows use of more advanced native USB commands and includes example code in C#, Visual Basic .NET, and Visual C++ TTL serial features: Supports 300 – 200000 bps in fixed-baud mode, 300 – 115200 bps in autodetect-baud mode (2) Simultaneously supports the Pololu protocol, which gives access to advanced functionality, and the simpler Scott Edwards MiniSSC II protocol (there is no need to configure the device for a particular protocol mode) Can be daisy-chained with other Pololu servo and motor controllers using a single serial transmit line Can function as a general-purpose USB-to-TTL serial adapter for projects controlled from a PC Supports 300 – 200000 bps in fixed-baud mode, 300 – 115200 bps in autodetect-baud mode (2) Simultaneously supports the Pololu protocol, which gives access to advanced functionality, and the simpler Scott Edwards MiniSSC II protocol (there is no need to configure the device for a particular protocol mode) Can be daisy-chained with other Pololu servo and motor controllers using a single serial transmit line Can function as a general-purpose USB-to-TTL serial adapter for projects controlled from a PC Our Maestro Arduino library makes it easier to get started controlling a Maestro from an Arduino or compatible boards like our A-Stars Board can be powered off of USB or a 5 – 16 V battery, and it makes the regulated 5V available to the user Compact size of 0.85" × 1.20" (2.16 × 3.05 cm) and light weight of 0.17 oz (4.8 g) with headers Upgradable firmware 1 This is the weight of the board without header pins or terminal blocks. 2 The available pulse rate and range depend on each other and factors such as baud rate and number of channels used. See the Maestro User’s Guide for details. 3 The user script system is more powerful on the Mini Maestro than on the Micro Maestro. See See the Maestro User’s Guide for details. The Micro and Mini Maestros are available with through-hole connectors preinstalled or as partial kits, with the through-hole connectors included but not soldered in. The preassembled versions are appropriate for those who want to be able to use the product without having to solder anything or who are happy with the default connector configuration, while the partial kit versions enable the installation of custom connectors, such as right-angle headers that allow servos to be plugged in from the side rather than the top, or colored header pins that make it easier to tell which way to plug in the servo cables. The following picture shows an example of a partial-kit version of the 24-channel Mini Maestro assembled with colored male header pins: 24-channel Mini Maestro (partial kit version) assembled with colored male header pins. Micro Maestro as the brains of a tiny hexapod robot. Serial servo controller for multi-servo projects (e.g. robot arms, animatronics) based on BASIC Stamp or Arduino platforms. PC-based servo control over USB port PC-based control of motors by interfacing with an ESC over USB PC interface for sensors and other electronics: Read a gyro or accelerometer from a PC for novel user interfaces Read a gyro or accelerometer from a PC for novel user interfaces General I/O expansion for microcontroller projects Programmable, self-contained Halloween or Christmas display controller that responds to sensors. The picture to the right and the video below show a self-contained hexapod robot that uses three micro servos and two digital distance sensors for autonomous walking. Self-contained servo tester An example setup using a Micro Maestro to control a ShiftBar and Satellite LED Module is shown in the picture below and one of the videos above. Maestro source code to control a ShiftBar or ShiftBrite is available in the Example scripts section of the Maestro User’s guide. Connecting the Micro Maestro to a chain of ShiftBars. A single 12V supply powers all of the devices. People often buy this product together with: | 1/1 | |||
Mini Push-Pull Solenoid - 5V Solenoids are basically electromagnets: they are made of a coil of copper wire with an armature (a slug of metal) in the middle. When the coil is energized, the slug is pulled into the center of the coil. This makes the solenoid able to pull (from one end) or push (from the other). This solenoid in particular is very small, with a 20mm long body and a 'captive' armature with a return spring. This means that when activated with ~5VDC, the solenoid moves and then the voltage is removed it springs back to the original position, which is quite handy. Many lower cost solenoids are only push type or only pull type and may not have a captive armature (it'll fall out!) or don't have a return spring. This one even has nice mounting tabs, its a great all-purpose solenoid. We also have a slightly bigger small push-pull solenoid and a huge large push-pull solenoid in the store! To drive a solenoid you will need a power transistor and a protection diode, check this diagram for how to wire it to an Arduino or other microcontroller. You will need a fairly good power supply to drive a solenoid, as a lot of current will rush into the solenoid to charge up the electro-magnet, about 1 Amp, so be careful of trying to power/activate from a computer's USB. | 9/9 | |||
Tic T500 USB Multi-Interface Stepper Motor Controller (Connectors Soldered) The Tic T500 USB Multi-Interface Stepper Motor Controller makes basic control of a stepper motor easy, with quick configuration over USB using our free software. The controller supports six control interfaces: USB, TTL serial, I²C, analog voltage (potentiometer), quadrature encoder, and hobby radio control (RC). This version incorporates an MPS MP6500 driver and ships with soldered header pins and terminal blocks. It can operate from 4.5 V to 35 V and can deliver up to approximately 1.5 A per phase without a heat sink or forced air flow (or 2.5 A max with sufficient additional cooling). The Tic family of stepper motor controllers makes it easy to add basic control of a bipolar stepper motor to a variety of projects. These versatile, general-purpose modules support six different control interfaces: USB for direct connection to a computer, TTL serial and I²C for use with a microcontroller, RC hobby servo pulses for use in an RC system, analog voltages for use with a potentiometer or analog joystick, and quadrature encoder for use with a rotary encoder dial. They also offer many settings that can be configured using our free configuration utility (for Windows, Linux, and macOS). This software simplifies initial setup of the device and allows for in-system testing and monitoring of the controller via USB (a micro-B USB cable is required to connect the Tic to a computer). The table below lists the members of the Tic family and shows the key differences among them. 1 See product pages and user’s guide for operating voltage limitations. Tic T500 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Tic T834 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Tic T825 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Tic T249 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Features and specifications Open-loop speed or position control of one bipolar stepper motor A variety of control interfaces: USB for direct connection to a computer TTL serial operating at 5 V for use with a microcontroller I²C for use with a microcontroller RC hobby servo pulses for use in an RC system Analog voltage for use with a potentiometer or analog joystick Quadrature encoder input for use with a rotary encoder dial, allowing full rotation without limits (not for position feedback) STEP/DIR inputs for compatibility with existing stepper motor control firmware USB for direct connection to a computer TTL serial operating at 5 V for use with a microcontroller I²C for use with a microcontroller RC hobby servo pulses for use in an RC system Analog voltage for use with a potentiometer or analog joystick Quadrature encoder input for use with a rotary encoder dial, allowing full rotation without limits (not for position feedback) STEP/DIR inputs for compatibility with existing stepper motor control firmware Acceleration and deceleration limiting Maximum stepper speed: 50,000 steps per second Very slow speeds down to 1 step every 200 seconds (or 1 step every 1428 seconds with reduced resolution). Up to six different microstep resolutions: The Tic T825, Tic T834, and T249 support full step, half step, 1/4 step, 1/8 step, 1/16 step, and 1/32 step The Tic T500 supports full step, half step, 1/4 step, 1/8 step The Tic T825, Tic T834, and T249 support full step, half step, 1/4 step, 1/8 step, 1/16 step, and 1/32 step The Tic T500 supports full step, half step, 1/4 step, 1/8 step Digitally adjustable current limit Optional safety controls to avoid unexpectedly powering the motor Input calibration (learning) and adjustable scaling degree for analog and RC signals 5 V regulator (no external logic voltage supply needed) Optional limit switch inputs with homing capabilities Optional kill switch inputs STEP/DIR outputs for controlling external stepper motor drivers Connects to a computer through USB via a USB A to Micro-B cable (not included) Free configuration software available for Windows, Linux, and macOS Comprehensive user’s guide New revision (tic03b): As of 3 January 2019, we are shipping a new revision of the Tic T500 that works better with low-resistance, low-inductance stepper motors at high input voltages and high current limits, which could lead to lost steps with the original tic03a version. Please contact us if you have the older version and would like a free replacement. The Tic T500 is based on the MP6500 IC from Monolithic Power Systems. This driver IC features automatic decay mode selection, using internal current sensing to automatically adjust the decay mode as necessary to provide the smoothest current waveform. The Tic T500 can operate from 4.5 V to 35 V and can deliver up to approximately 1.5 A continuous per phase without a heat sink or forced air flow (the peak current per phase is 2.5 A). This version is sold with connectors soldered so no soldering is necessary to use it. Powering the Tic T500 with a supply voltage between 4.5 V and 5.5 V might cause its logic voltage to be lower than normal, which could affect operation. See the user’s guide for more information. Tic T500 USB Multi-Interface Stepper Motor Controller (Connectors Soldered). A version is also available with header pins and terminal blocks included but not soldered. People often buy this product together with: | 2/2 |