Image | Item | Location | Available | |
---|---|---|---|---|
Adafruit RGB Positive 16x2 LCD+Keypad Kit for Raspberry Pi This new Adafruit Pi Plate makes it easy to use an RGB 16x2 Character LCD. We really like the RGB Character LCDs we stock in the shop. (For RGB we have RGB negative and RGB positive.) Unfortunately, these LCDs do require quite a few digital pins, 6 to control the LCD and then another 3 to control the RGB backlight for a total of 9 pins. That's nearly all the GPIO available on a Pi!With this in mind, we wanted to make it easier for people to get these LCD into their projects so we devised a Pi plate that lets you control a 16x2 Character LCD, up to 3 backlight pins AND 5 keypad pins using only the two I2C pins on the R-Pi! The best part is you don't really lose those two pins either, since you can stick i2c-based sensors, RTCs, etc and have them share the I2C bus. This is a super slick way to add a display without all the wiring hassle.New, we've updated this Pi plate so the buttons on on the right side, which makes it a little more mechanically stableThis pi plate is perfect for when you want to build a stand-alone project with its own user interface. The 4 directional buttons plus select button allows basic control without having to attach a bulky computer.The plate is designed for both Revision 1 and Revision 2 Raspberry Pi's. It uses the I2C (SDA/SCL) pins. We have a special xtra-tall 26-pin header so the plate sits above the USB and Ethernet jacks. For Pi Model B+ and Pi 2, the resistors sit right above the new set of USB ports. To keep them from shorting against the metal, a piece of electrical tape must be placed onto the USB ports.This product comes as a kit! Included is a high quality PCB and all the components (buttons, header etc). A 16x2 Character RGB positive LCD is included! Assembly is easy, even if you've never soldered before and the kit can be completed in 30 minutes. Check the product tutorial page for assembly instructions before purchasingWe also have some handy Python code to help you easily talk to the LCD and buttons You can also easily query the 5 keypad buttons to get input through the library, so you get extra buttons without using any more pins. The buttons are automatically de-bounced inside the library.At this time, the code and plate can control the RGB backlight of our character LCDs by turning each LED on or off. This means you can display the following colors: Red, Yellow, Green, Teal, Blue, Violet, White and all off. There is no support for PWM control of the backlight at this time, so if you need to have more granular control of the RGB backlight to display a larger range of colors, this plate can't do that (the I2C expander does not have PWM output).Product page with tutorials, documentation and assembly information | 2/2 | |||
Adafruit Perma-Proto HAT for Pi Mini Kit - With EEPROM Design your own Pi HAT, attach custom circuitry and otherwise dress your Raspberry Pi with this jaunty prototyping HAT kit with EEPROM To kick off the Adafruit HAT party, we have this Perma-Proto inspired plug in daughter board. It has a grid of 0.1" prototyping soldering holes for attaching chips, resistors, LED, potentiometers and more. The holes are connected underneath with traces to mimic the solderless breadboards with which you're familiar. There's also long power strips for +3V, +5V and Ground connections to the Pi. Near the top we break out nearly every pin you could want to connect to the Pi (#26 didn't quite make the cut). This is the fancier version of our Perma-Proto HAT. It comes with a printed circuit board and a single 2x20 GPIO Header for Raspberry Pi to put your Perma-Proto on top of your Raspberry Pi (like a nice little hat...) This version comes with a blank 24C32 I2C EEPROM soldered on and connected to the EEDAT/EECLK lines so you cannot 'stack' it with other HATs. However, you can program in the EEPROM to make a self-identifying setup using the Pi Foundations' HAT specs - please note the specifications are still under development. You can customize your Perma-Proto setup using a standard 2x20 stacking header or extra tall 2x20 stacking header. You can also swap out the 2x20 header with a slim 2x20 type if you want it to sit closer to the Pi, or an extra tall one if you want it to sit above the USB/Ethernet ports. A bit of light soldering is required to attach the header to the PCB but it's easy work.This hat is only compatible with the Raspberry Pi Zero, A+, B+, 2, 3, etc (any Pi with 2x20 connector)! It will not work with the Raspberry Pi Model A or B with 2x13 connectors | 5/5 | |||
Adafruit Perma-Proto HAT for Pi Mini Kit - No EEPROM Design your own Pi HAT, attach custom circuitry and otherwise dress your Pi Zero, A+, B+, Pi 2 or Pi 3 (any Pi with a 2x20 connector) with this jaunty prototyping HAT kit. To kick off the Adafruit HAT party, we have this Perma-Proto inspired plug in daughter board. It has a grid of 0.1" prototyping soldering holes for attaching chips, resistors, LED, potentiometers and more. The holes are connected underneath with traces to mimic the solderless breadboards with which you're familiar. There's also long power strips for +3V, +5V and Ground connections to the Pi. Near the top we break out nearly every pin you could want to connect to the Pi (#26 didn't quite make the cut). This is just the basic version of our Perma-Proto HAT. It comes with a printed circuit board and a single 2x20 GPIO Header for Raspberry Pi to put your Perma-Proto on top of your Raspberry Pi (like a nice little hat...) This version does not come with an EEPROM so you can 'stack' it with other HATs without worrying about an EEPROM address collision. You can customize your Perma-Proto setup using a standard 2x20 stacking header or extra tall 2x20 stacking header. You can also swap out the 2x20 header with a slim 2x20 type if you want it to sit closer to the Pi, or an extra tall one if you want it to sit above the USB/Ethernet ports. A bit of light soldering is required to attach the header to the PCB but it's easy work.This hat is only compatible with the Raspberry Pi Zero/A+/B+/2/3 (any Pi with 2x20 connector)! It will not work with the Raspberry Pi Model A or B with 2x13 connector. Our initial version has the +3V and +5V markings in blue, and the GND markings in red, future orders will have these colors swapped to better match a solderless breadboard | 3/3 | |||
Pimoroni Pan-Tilt HAT for Raspberry Pi - without pan-tilt module The Pan-Tilt HAT from Pimoroni lets you mount and control a pan-tilt module right on top of your Raspberry Pi. The HAT and its on-board microcontroller let you independently drive the two servos (pan and tilt), as well as driving up to 24 regular LED (with PWM control) or NeoPixel RGB (or RGBW) LEDs. There's also a handy slot through which you can route the servo, LED, and camera cables. The module pans and tilts through 180 degrees in each axis. Use Pan-Tilt HAT with a Pi camera for face-tracking, or mount it on top of your roving robot as a set of eyes. Ideal for a mini CCTV system, it will allow you to control the movement of your Pi camera with minimal fuss. Or why not just stick a foam sword on top and make it swashbuckle?! There's absolutely no soldering required (unless you decide to use a NeoPixel strip or ring with it), as the servos on the pan-tilt module have female jumper wires attached and they've soldered a strip of right-angled header pins to the underside of the HAT to connect them up. They've also included a handy little acrylic camera mount to hold your camera snugly in the head of the pan-tilt module. The mount has a couple of mounting holes at the top to hold a NeoPixel stick and there's a neat little frosted diffuser to make the light super-dreamy. You can use one of our RGBW NeoPixel sticks for a lovely pure white glow (or any other color!) Note that the Pi camera, mini pan-tilt kit, NeoPixel strip, and Pi 3 are not included. You'll need to pick them up separately! Features Pan-tilt module (180 degrees motion through each axis) with two servos HAT with two servo channels, one PWM or NeoPixel RGB (or RGBW) LED channel Right-angled header pre-soldered to underside of HAT for servo and LED channels Slot to route servo, LED, and camera cables through Acrylic mount to hold Pi camera and NeoPixel strip (with diffuser) in place Compatible with Raspberry Pi 3, 2, B+, A+, and Zero Python library Comes fully assembled | 1/1 | |||
Pimoroni pHAT DAC for Raspberry Pi Zero If music be the food of love, play on. But make sure you use this super little pHAT DAC to get the best out of your Raspberry Pi audio! The pHAT DAC provides a super affordable high-quality DAC for the Raspberry Pi. Pumping out 24-bits at 192KHz of audio goodness from the Raspberry Pi's I2S interface on the 2x20 pin GPIO header. Since it's digital audio, it sounds really good, much better than the onboard analog audio. The 3.5mm stereo jack comes soldered onto the board already. Though designed to match the format of the Raspberry Pi Zero it is compatible with all 40-pin GPIO Raspberry Pi variants (2/B+/A+). Features: 24-bit audio at 192KHz Line out stereo jack pHAT format board Uses the PCM5102A DAC to work with the Raspberry Pi I2S interface Kit includes: Assembled pHAT DAC & 2x20 0.1" female GPIO header, some light soldering is required to attach the header on, or you can of course solder the pHAT right onto the Pi Zero At the heart of pHAT DAC is Texas Instrument's PCM5102A stereo audio DAC chip. Raspberry Pi not included! | 1/1 | |||
Particle Asset Tracker Shield Locate your stuff! The Asset Tracker Kit from Particle contains all of the pieces you need to build a GSM + GPS location tracker for your most prized possessions. In addition to a GPS Shield, the Asset Tracker Kit comes with a weatherproof enclosure, so it’ll keep your electronics safe from the dust, dirt, and moisture of the great outdoors. Keep your bicycle, baby, and backpack safe--satellite lock onto this bargain project kit today! The Asset Tracker Kit comes with a Particle SIM card with service in more than 100 countries worldwide, and includes 3 months of Particle's 1MB monthly data plan for IoT devices. All Electrons also include Particle's development tools, access to a cloud platform with messaging, and a SIM dashboard for managing and updating your new connected hardware. The Electron is a GSM-only device, and does not support CDMA networks. Some US carriers are planning to sunset their 2G networks beginning in 2017, so the Electron 3G (Americas) is recommended for customers in the US. This is the 2G Global version. Particle also offers two types of Electron 3G Kits—the aforementioned one for North and South America (850/1900 MHz) and one for Europe/Asia/Africa (900/1800 MHz). Check the full list of compatible countries for the location in which your product will be deployed. Contents: Electron USB Micro B Cable Particle SIM Card Cellular Antenna 2000mAh LiPo Battery Particle Sticker Resistor 220-Ohm Breadboard Photoresistor Bright LED - White Basic Data Charges*: Particle's 1MB monthly data plan: - 3 months included with kit- $2.99/month for 1MB (thousands of messages) - No contracts, cancel anytime $0.99/each additional MB 3G Global and 3G Americas/Aus versions also available. *Data rates vary by country and by data usage, see here for full pricing and bulk discounts. ** Continent compatibility is simplified and exceptions exist. Please be sure to check the full list of compatible countries for the location in which your product will be deployed. | 2/2 | |||
SparkFun Beefcake Relay Control Kit (Ver. 2.0) Your 5V system can wield great power with this big, beefy relay board. How does 10A on the NC contacts and 20A on the NO contacts at 220VAC sound? The SparkFun Beefcake Relay Control Kit contains all the parts you need to get your high-power load under control. Only minimal assembly is required! The heart of the board is a sealed, SPDT 20A/10A Relay. The relay is controlled by 5V logic through a transistor, and an LED tells you when the relay is closed. This is a kit, so it comes as through-hole parts with assembly required, which makes for some nice soldering practice. Screw terminal connectors on either side of the board make it easy to incorporate into your project. There are some pretty beefy traces connecting the relay to the load pins, but the 3-pin terminals are only rated for 15A max! If you plan on connecting a larger load, you’ll need to solder directly to the board. As always with high current and voltage, play it safe and use your judgment when deciding how much of a load you want to put on a board – in open airflow the PCB can handle the full 20A for a few minutes at a time, but in an enclosed area heat can build up. Note: Please keep in mind that this board is really meant for someone with experience and good knowledge of electricity. If you’re uncomfortable soldering or dealing with high voltage, please check out the PowerSwitch Tail II. The PowerSwitch Tail II is fully enclosed, making it a lot safer. Get Started With the Beefcake Hookup & Assembly Guide Features Voltage Rating: 220VAC/28VDC VCC requirements: 4-6V, 150mA capable SPDT pins exposed (Form C) 14 AWG screw terminals for relay connections. 10 AWG solder lugs for relay connections. Flyback diode included Zener recovery diode included (decreases turn-off time) Heavy 2 oz. copper on PCB | 2/2 | |||
SparkFun H2OhNo! ATtiny Dev Board / Water Alarm The SparkFun H2OhNo! is a water sensor alarm kit that you build yourself. When water is detected across the sense pins an alarm goes off and an LED starts blinking. If you’ve ever had a water heater explode or tried to create submersible electronics you know how important it is to be able to detect when water is around! Underneath the default function of H2OhNo! is a small but powerful development board for the ATtiny85 microcontroller. The board includes a buzzer, LED, a coin cell battery, and the ability to detect analog and digital sensors. This mixture of parts creates a great low-cost tool to learn how to program and sense things! This board can be re-programmed to be an Annoy-A-Tron (originally made by Think Geek). Please annoy respectfully, otherwise your board may get demolished. Note: Please check the hookup guide below for helpful tips and assembly instructions. Note: Due to the requirements of shipping the battery in this kit, orders may take longer to process and therefore do not qualify for same-day shipping. Additionally, these batteries can not be shipped via Ground or Economy methods to Alaska or Hawaii. Sorry for any inconvenience this may cause. Get Started with the H2OhNo! Guide Includes 1x H2OhNo! PCB 1x ATtiny85 (Pre-Programmed) 1x 20mm Coin Cell Battery Holder 1x CR2032 Coin Cell Battery 1x Slide Switch 1x 2kHz Piezo Speaker 1x 8-pin DIP Socket 1x Super Bright Red LED 2x Jumper Wire 1x Capacitor 0.1uF Features 22.86mm x 52.07mm (0.90" x 2.05") | 5/5 | |||
Adafruit Bicolor LED Square Pixel Matrix with I2C Backpack What's better than a single LED? Lots of LEDs! A fun way to make a small colorful display is to use a 1.2" Bi-color 8x8 LED Matrix. Matrices like these are 'multiplexed' - so to control all the 128 LEDs you need 24 pins. That's a lot of pins, and there are driver chips like the MAX7219 that can help control a matrix for you but there's a lot of wiring to set up and they take up a ton of space. Here at Adafruit we feel your pain! After all, wouldn't it be awesome if you could control a matrix without tons of wiring? That's where these adorable LED matrix backpacks come in. We have them in three flavors - a mini 8x8, 1.2" Bi-color 8x8 and a 4-digit 0.56" 7-segment. They work perfectly with the matrices we stock in the Adafruit shop and make adding a bright little display trivial. It's called a Bicolor LED, but you can have 3 colors total by turning on the red and green LEDs, which creates yellow-orange. That's 3 colors for the price of 2!The matrices use a driver chip that does all the heavy lifting for you: They have a built in clock so they multiplex the display. They use constant-current drivers for ultra-bright, consistent color, 1/16 step display dimming, all via a simple I2C interface. The backpacks come with address-selection jumpers so you can connect up to four mini 8x8's or eight 7-segments/bicolor (or a combination, such as four mini 8x8's and two 7-segments and two bicolor, etc) on a single I2C bus.The product kit comes with: A fully tested and assembled LED backpack 1.2" Bi-color 8x8 LED Matrix 4-pin header A bit of soldering is required to attach the matrix onto the backpack but its very easy to do and only takes about 5 minutes.Of course, in classic Adafruit fashion, we also have a detailed tutorial showing you how to solder, wire and control the display. We even wrote a very nice library for the backpacks so you can get running in under half an hour, displaying images on the matrix or numbers on the 7-segment. If you've been eyeing matrix displays but hesitated because of the complexity, his is the solution you've been looking for! | 1/1 | |||
Pimoroni Speaker pHAT for Raspberry Pi Zero The Pimoroni Speaker pHAT crams an I2S DAC and mono amplifier, a tiny 8Ω 2W speaker, and a 10 LED bar graph all onto one teeny little pHAT. It's the neatest way to add audio to your Pi project, and its beautiful artwork evokes an 80s boombox! Pimoroni isn't claiming audiophile sound quality, but it's perfect for fun little projects where you want to add sound output – speech, notification sounds, or light music, for example. Why not combine it with a little USB microphone to make a tiny voice-activated assistant in the style of Amazon's Echo? Or set up a simple Flask API and send audio notifications to it from IFTTT with a simple HTTP request. It comes as a kit, so you'll have to solder on the female 40 pin header, and screw and solder the speaker on. Check out Pimoroni's assembly guide for more details. Features: I2S audio DAC with 3W mono amplifier (MAX98357A) Default output of 0.45W/26.5dB 8Ω 2W Mylar speaker Routed holes to channel sound 10 bright white bar graph LEDs SN3218 LED driver chip Compatible with Raspberry Pi 3, 2, B+, A+, and Zero Female header and speaker require soldering (includes a piece of bare wire to solder the speaker) Kit includes: Speaker pHAT 8Ω 2W Mylar speaker 2x20 pin female header 5cm 24AWG bare wire 4x M2x8 black nylon bolts 8x M2 black nylon nuts Note: Pi Zero not included! | 0/1 | |||
Adafruit Capacitive Touch HAT for Raspberry Pi - Mini Kit - MPR121 This touch-able add on HAT for Raspberry Pi will inspire your next interactive project with 12 capacitive touch sensors. Capacitive touch sensing works by detecting when a person (or animal) has touched one of the sensor electrodes. Capacitive touch sensing used for stuff like touch-reactive tablets and phones, as well as control panels for appliances, which is where you may have used it before. This HAT allows you to create electronics that can react to human touch, with up to 12 individual sensors. The HAT has 12 'figure 8' holes in it that can be gripped onto with alligator clip cables. Attach one side of the clip to the HAT and the other side to something electrically conductive (like metal) or full of water (like vegetables or fruit!) Then start up our handy Python library code to detect when the object is touched. That's pretty much it, very easy! For advanced users, you can also solder to a pad to make a slimmer & more permanent connection. Works great with Raspberry Pi Model A+, B+, or Pi 2. This HAT can be used with Model A or Model B but requires purchase/soldering of a extra-tall 2x13 header instead of the 2x20 included. We're working on a detailed tutorial, meanwhile you can check out the tutorial for the non-HAT/breakout-version of this chip with the Raspberry Pi here which uses the exact same library and code. We have examples for reading touches, turning touches into keyboard KeyUp/KeyDown presses (so you can make a veggie-keyboard) as well as an audio player that will play a sound per sensor (fruit drums!) Each order comes with a Capacitive Touch HAT and a 2x20 socket header. You'll need to do some light through-hole soldering to attach the headers onto the HAT circuit board, but its easy to do with basic soldering tools like a soldering iron and rosin core electronics solder. You'll also likely want to pick up a 12 pack of alligator clips! Please note! This kit does not come with Raspberry Pi, alligator clips, speaker, or delicious fruit! However, we do have all of those in the store. Well, all except fruit - despite being called Adafruit, we do not actually sell fruit | 1/1 | |||
Assembled Terminal Block Breakout FeatherWing for all Feathers The Terminal Block Breakout FeatherWing kit is like the Golden Eagle of prototyping FeatherWings (eg. majestic, powerful, good-looking). To start, you get a nice prototyping area underneath your Feather, with extra pads for ground, 3.3V and SDA/SCL. Not one to stop there, we expanded the PCB out to 2" x 2.5" with 3.5mm pitch terminal blocks down each side. There's also four mounting holes so you can attach the breakout to your enclosure or project. This product works with all our Feathers! The terminal blocks allow you to connect to any of the external Feather pins, great for wiring temporary or permanent installations. We also give you a few extra terminal block pins for ground and 3.3V connections since those are so useful. Finally, there's a slide switch, which connects the EN pin to ground when in the 'off' position, cutting off the 3.3V regulator. Note that the FONA Feather uses both VBat and 3.3V as power supplies so you wont be able to fully turn off the FONA Feather with this switch. Note: As of Thursday, December 15th 2016, this product now comes fully assembled! Plug in your Feather and you're ready to go immediately. Also, the terminal blocks included with your product may be blue or black. | 2/2 | |||
FeatherWing Doubler - Prototyping Add-on For All Feather Boards This is the FeatherWing Doubler - a prototyping add-on and more for all Feather boards. This is similar to our FeatherWing Proto except there are two! The magic of the Doubler comes when stacking a Feather and another board on top of the Doubler so you can work with both boards simultaneously side-by-side! In addition to the board the Doubler comes with: 1 Doubler PCB 1 set Feather Stacking Headers 1 set Feather Female Headers The Doubler, like the Proto, has a duplicate breakout for each pin on a Feather, as well as a bunch of plain grid proto holes. Also, the two sets of pins are cross connected and for GND and 3.3V, we give you a full strip of connected pads. You'll need to solder on the female headers or stacking headers however you like, the Doubler comes as a mini kit! Check out our range of Feather boards here. | 2/2 | |||
SparkFun MOSFET Power Control Kit This is the SparkFun MOSFET Power Control Kit, a breakout PTH soldering kit for for the RFP30N06LE N-Channel MOSFET. This kit is extremely simple to assemble with only 10 pins to solder. If you are looking for a little more control over projects that require a little more power than normal but need a better way than your breadboard, this kit is perfect for you Included in each kit is a SparkFun MOSFET Power Control PCB, two screw terminals (one 2-pin and one 3-pin), a 10k resistor, and a single RFP30N06LE MOSFET. What we really like about this particular MOSFET is that it’s very common and offers very low on-resistance with a control (gate) voltage that is compatible with any 3-5V microcontroller or mechanical switch. This allows you to control high-power devices with very low-power control mechanisms. Note: While the MOSFET is rated to 60V 30A, the circuit board traces are only rated to 3.5A. Includes 1x SparkFun MOSFET Power Control PCB 1x RFP30N06LE MOSFET 1x 2-pin screw terminal 1x 3-pin screw terminal 1x 10k resistor | 1/1 | |||
Particle Photon with Headers The Photon is a $19 tiny Wi-Fi development kit for creating connected projects and products for the Internet of Things. It's easy to use, it's powerful, and it's connected to the cloud. The tools that make up the Photon's ecosystem (and come along with the board) are designed to let you build and create whether you're an embedded engineer, web developer, Arduino enthusiast or IoT entrepreneur. You'll be able to write your firmware in our web or local IDE, deploy it over the air, and build your web and mobile apps with ParticleJS and our Mobile SDK. The board itself uses a Broadcom WICED Wi-Fi chip (one that can be found in Nest Protect, LIFX, and Amazon Dash) alongside a powerful STM32 ARM Cortex M3 microcontroller. It's like the Spark Core, but better! The WICED chipset is much faster than the original CC3000 in the 'Core and also supports SSL and Soft-AP mode. This is the Photon with breadboard headers connected. We also have the Photon without headers. If you're looking for a version with a breadboard and USB cable, click here for the Photon Starter Kit. | 1/1 | |||
USB XBee Adapter This low cost XBee USB Adapter Board comes in partially assembled kit form and provides a cost-effective solution to interfacing a PC or microcontroller to any XBee or XBee Pro module. The PC connection can be used to configure the XBee Module through Digi's X-CTU software. Works with XBee series 1 and 2 as well as Pro modules By using this adapter board you can provide an easy interface to the XBee or XBee Pro modules by converting the 2mm pin spacing to breadboard friendly 0.100" spacing. The adapter board also provides a means to connect pluggable wires or solder connections and also provides mounting holes. Note: This product from Parallax uses genuine FTDI chips 10/23/14 (read more). Features: Provides an easy interface to configure XBee Modules using Digi's X-CTU software Converts XBee 2mm pin spacing to 0.100" pin spacing 4 status indicator LEDs for Power, RSSI, Associate and mode (sleep/ON) Provides easy pluggable wire or solder connections Includes mounting holes Pin-out compatible with our other XBee Adapter boards Partially assembled kit form for flexible configuration Kit Contents: (1) XBee Adapter Board PCB (2) 10-pin 2mm sockets - these are soldered into the board. (1) 40-pin SIP header Tools Required: Soldering Iron Solder Flux Diagonal cutters or Exacto knife Key Specifications: Power requirements: 5.0V from USB or VDD pin, 3.3V generated on-board Communication: Serial pass-through to XBee module/USB to Host PC Dimensions: 1.51 x 1.00 x 0.58 in* (38.3 x 25.6 x 14.8 mm*) * when headers are attached Operating temp range: -40 to +158F (-40 to +70C) Works with all XBee & Pro modules! You'll need a USB cable with a mini-b connector on it to plug this into your computer! We have such an item in the shop, or you can look around the house, they're often used for digital cameras. | 1/1 | |||
Micro Maestro 6-Channel USB Servo Controller (Assembled) The six-channel Micro Maestro raises the performance bar for serial servo controllers with features such as a native USB interface and internal scripting control. Whether you want high-performance servo control (0.25μs resolution with built-in speed and acceleration control) or a general I/O controller (e.g. to interface with a sensor or ESC via your USB port), this tiny, versatile device will deliver. The fully assembled version ships with header pins installed. For a full list of products shown in this video, see the blog post. The Micro Maestro is the smallest of Pololu’s second-generation USB servo controllers. The Maestros are available in four sizes and can be purchased fully assembled or as partial kits: Maestro family of USB servo controllers: Mini 24, Mini 18, Mini 12, and Micro 6. Micro Maestro — fully assembled Micro Maestro — partial kit Mini Maestro 12 — fully assembled Mini Maestro 12 — partial kit Mini Maestro 18 — fully assembled Mini Maestro 18 — partial kit Mini Maestro 24 — fully assembled Mini Maestro 24 — partial kit The Mini Maestros offer higher channel counts and some additional features (see the Maestro comparison table below for details). Micro Maestro 6-channel USB servo controller bottom view with quarter for size reference. The Micro Maestro is a highly versatile servo controller and general-purpose I/O board in a highly compact (0.85"×1.20") package. It supports three control methods: USB for direct connection to a computer, TTL serial for use with embedded systems, and internal scripting for self-contained, host controller-free applications. The channels can be configured as servo outputs for use with radio control (RC) servos or electronic speed controls (ESCs), as digital outputs, or as analog inputs. The extremely precise, high-resolution servo pulses have a jitter of less than 200 ns, making these servo controllers well suited for high-performance applications such as robotics and animatronics, and built-in speed and acceleration control for each channel make it easy to achieve smooth, seamless movements without requiring the control source to constantly compute and stream intermediate position updates to the Micro Maestro. Units can be daisy-chained with additional Pololu servo and motor controllers on a single serial line. A free configuration and control program is available for Windows and Linux, making it simple to configure and test the device over USB, create sequences of servo movements for animatronics or walking robots, and write, step through, and run scripts stored in the servo controller. The Micro Maestro’s 1 KB of internal script memory allows storage of servo positions that can be automatically played back without any computer or external microcontroller connected. Because the Micro Maestro’s channels can also be used as general-purpose digital outputs and analog inputs, they provide an easy way to read sensors and control peripherals directly from a PC over USB, and these channels can be used with the scripting system to enable creation of self-contained animatronic displays that respond to external stimuli and trigger additional events beyond just moving servos. Bottom view with dimensions (in inches) of Pololu Micro and Mini Maestro servo controllers. The Micro Maestro is available fully assembled with 0.1″ male header pins installed as shown in the product picture or as a partial kit, which ship with these header pins included but unsoldered, allowing the use of different gender connectors or wires to be soldered directly to the pads for lighter, more compact installations. The Mini Maestro 12, 18, and 24 are also available fully assembled or as partial kits. A USB A to mini-B cable (not included) is required to connect this device to a computer. The Micro and Mini Maestros have 0.086″ diameter mounting holes that work with #2 and M2 screws. Micro Maestro 6-channel USB servo controller assembled. Micro Maestro 6-channel USB servo controller partial kit. Three control methods: USB, TTL (5V) serial, and internal scripting 0.25μs output pulse width resolution (corresponds to approximately 0.025° for a typical servo, which is beyond what the servo could resolve) Pulse rate configurable from 33 to 100 Hz (2) Wide pulse range of 64 to 3280 μs (2) Individual speed and acceleration control for each channel Channels can be optionally configured to go to a specified position or turn off on startup or error Channels can also be used as general-purpose digital outputs or analog inputs A simple scripting language lets you program the controller to perform complex actions even after its USB and serial connections are removed Comprehensive user’s guide Free configuration and control application for Windows makes it easy to: Configure and test your controller Create, run, and save sequences of servo movements for animatronics and walking robots Write, step through, and run scripts stored in the servo controller Configure and test your controller Create, run, and save sequences of servo movements for animatronics and walking robots Write, step through, and run scripts stored in the servo controller Two ways to write software to control the Maestro from a PC: Virtual COM port makes it easy to send serial commands from any development environment that supports serial communication Pololu USB Software Development Kit allows use of more advanced native USB commands and includes example code in C#, Visual Basic .NET, and Visual C++ Virtual COM port makes it easy to send serial commands from any development environment that supports serial communication Pololu USB Software Development Kit allows use of more advanced native USB commands and includes example code in C#, Visual Basic .NET, and Visual C++ TTL serial features: Supports 300 – 200000 bps in fixed-baud mode, 300 – 115200 bps in autodetect-baud mode (2) Simultaneously supports the Pololu protocol, which gives access to advanced functionality, and the simpler Scott Edwards MiniSSC II protocol (there is no need to configure the device for a particular protocol mode) Can be daisy-chained with other Pololu servo and motor controllers using a single serial transmit line Can function as a general-purpose USB-to-TTL serial adapter for projects controlled from a PC Supports 300 – 200000 bps in fixed-baud mode, 300 – 115200 bps in autodetect-baud mode (2) Simultaneously supports the Pololu protocol, which gives access to advanced functionality, and the simpler Scott Edwards MiniSSC II protocol (there is no need to configure the device for a particular protocol mode) Can be daisy-chained with other Pololu servo and motor controllers using a single serial transmit line Can function as a general-purpose USB-to-TTL serial adapter for projects controlled from a PC Our Maestro Arduino library makes it easier to get started controlling a Maestro from an Arduino or compatible boards like our A-Stars Board can be powered off of USB or a 5 – 16 V battery, and it makes the regulated 5V available to the user Compact size of 0.85" × 1.20" (2.16 × 3.05 cm) and light weight of 0.17 oz (4.8 g) with headers Upgradable firmware 1 This is the weight of the board without header pins or terminal blocks. 2 The available pulse rate and range depend on each other and factors such as baud rate and number of channels used. See the Maestro User’s Guide for details. 3 The user script system is more powerful on the Mini Maestro than on the Micro Maestro. See See the Maestro User’s Guide for details. The Micro and Mini Maestros are available with through-hole connectors preinstalled or as partial kits, with the through-hole connectors included but not soldered in. The preassembled versions are appropriate for those who want to be able to use the product without having to solder anything or who are happy with the default connector configuration, while the partial kit versions enable the installation of custom connectors, such as right-angle headers that allow servos to be plugged in from the side rather than the top, or colored header pins that make it easier to tell which way to plug in the servo cables. The following picture shows an example of a partial-kit version of the 24-channel Mini Maestro assembled with colored male header pins: 24-channel Mini Maestro (partial kit version) assembled with colored male header pins. Micro Maestro as the brains of a tiny hexapod robot. Serial servo controller for multi-servo projects (e.g. robot arms, animatronics) based on BASIC Stamp or Arduino platforms. PC-based servo control over USB port PC-based control of motors by interfacing with an ESC over USB PC interface for sensors and other electronics: Read a gyro or accelerometer from a PC for novel user interfaces Read a gyro or accelerometer from a PC for novel user interfaces General I/O expansion for microcontroller projects Programmable, self-contained Halloween or Christmas display controller that responds to sensors. The picture to the right and the video below show a self-contained hexapod robot that uses three micro servos and two digital distance sensors for autonomous walking. Self-contained servo tester An example setup using a Micro Maestro to control a ShiftBar and Satellite LED Module is shown in the picture below and one of the videos above. Maestro source code to control a ShiftBar or ShiftBrite is available in the Example scripts section of the Maestro User’s guide. Connecting the Micro Maestro to a chain of ShiftBars. A single 12V supply powers all of the devices. People often buy this product together with: | 1/1 | |||
Soft Potentiometer Kit from Plug&Wear This soft potentiometer is an interesting way to add an adjustable resistor / slide potentiometer to your wearable. You can use it to adjust the brightness of an LED, or as a sensor input to your Flora or Gemma. When the ring slides up and down the ribbon, the resistance from the end of the ribbon to ring will vary from ~100 ohms to about 8Kohm. To use as a voltage-output potentiometer, connect one end to ground and the other end to 3.3V or so, then measure the voltage on the ring in reference to ground. For an adjustable resistor, connect to one end of the ribbon and the ring, let the other end hang disconnected. The kit includes 50cm of specially-woven conductive ribbon and a stainless steel metal ring. | 1/1 |