Image | Item | Location | Available | |
---|---|---|---|---|
Tactile On/Off Switch with Leads Squeeze once to turn on, squeeze again to turn off! This clicky switch makes a great power switch or mode toggler. We like this switch because it's easy to embed in a seam for easily powering up/off wearable and fabric projects. Can handle up to 14V and 2 Amps! This is a really satisfying switch. As of May 20th, the dimensions of this switch are: Length of wires: 190mm / 7.5" Dimensions of body: 16mm x 15mm x 6mm / 0.6" x 0.6" x 0.2" Weight: 4.4g | 1/1 | |||
MyoWare Muscle Sensor Using our muscles to control things is the way that most of us are accustomed to doing it. We push buttons, pull levers, move joysticks… but what if we could take the buttons, levers and joysticks out of the equation? This is the MyoWare Muscle Sensor, an Arduino-powered, all-in-one electromyography (EMG) sensor from Advancer Technologies. The MyoWare board acts by measuring the filtered and rectified electrical activity of a muscle; outputting 0-Vs Volts depending the amount of activity in the selected muscle, where Vs signifies the voltage of the power source. It’s that easy: stick on a few electrodes (not included), read the voltage out and flex some muscles! The MyoWare Muscle Sensor is the latest revision of the Muscle Sensor of old, now with a new wearable design that allows you to attach biomedical sensor pads directly to the board itself getting rid of those pesky cables. This new board also includes a slew of other new features including, single-supply voltage of +3.1V to +5V, RAW EMG output, polarity protected power pins, indicator LEDs, and (finally) an On/Off switch. Additionally, we have developed a few shields (Cable, Power, and Proto) that can attach to the Myoware Muscle Sensor to help increase its versatility and functionality! Measuring muscle activity by detecting its electric potential, referred to as electromyography (EMG), has traditionally been used for medical research. However, with the advent of ever shrinking yet more powerful microcontrollers and integrated circuits, EMG circuits and sensors have found their way into all kinds of control systems. Note: Biomedical sensor pads can be found in the Recommended Products section below to be purchased separately. Get Started with the MyoWare Muscle Sensor Guide Features Wearable Design Single Supply +2.9V to +5.7V Polarity reversal protection +2.9V to +5.7V Polarity reversal protection Two Output Modes EMG Envelope Raw EMG EMG Envelope Raw EMG Expandable via Shields LED Indicators Specially Designed For Microcontrollers Adjustable Gain 0.82" x 2.06" | 1/1 | |||
Knit Conductive Fabric - Silver 20cm square This knit conductive fabric is plated with real Silver and super luxe! Use small pieces on the tips of gloves or in any soft circuit situation where you need a bit of stretch. This highly conductive fabric has a resistance of less than 1 ohm per foot in any direction across the textile. It can be used to make soft keypads and capacitive touch sensors, as well as soft "squeeze" switches. Great for use with FLORA.Sold as a 20cm x 20cm piece (minimum dimension)Use a dry iron on medium. Dry cleaning recommended. Do not use steam! Discoloration can occur. Knit Conductive Fabric - Silver 20cm square (11:35) | 1/1 | |||
Soft Potentiometer Kit from Plug&Wear This soft potentiometer is an interesting way to add an adjustable resistor / slide potentiometer to your wearable. You can use it to adjust the brightness of an LED, or as a sensor input to your Flora or Gemma. When the ring slides up and down the ribbon, the resistance from the end of the ribbon to ring will vary from ~100 ohms to about 8Kohm. To use as a voltage-output potentiometer, connect one end to ground and the other end to 3.3V or so, then measure the voltage on the ring in reference to ground. For an adjustable resistor, connect to one end of the ribbon and the ring, let the other end hang disconnected. The kit includes 50cm of specially-woven conductive ribbon and a stainless steel metal ring. | 1/1 | |||
Eeonyx Stretchy Variable Resistance Sensor Fabric - LTT-SLPA-20K Soft and stretchy, this Eeonyx Stretchy Variable Resistance Sensor fabric is great for making soft sensors or wearables that need to adjust and move. This is a bidirectionally stretchy nylon+spandex fabric coated with a long-lasting conductive coating that changes resistance when you pull on it! It's perfect for making stretch or strain sensors, by measuring the resistance change from one end of the fabric to the other - you'll need a resistive divider and analog-reading microcontroller. Each order comes with one sheet of 12"x13" inch / 33 x 30cm fabric with a nominal 0.5mm thickness. The fabric as a soft hand, and is easy to stitch, sew, or serge. Each sheet has a resting 20K-ohm/square inch surface resistivity and decreases to maybe 1/2 that when stretched. It has been tested up to 30 washes with no appreciable change in resistivity. | 1/1 | |||
LilyPad LED White (5pcs) This is a simple pack of five White LilyPad LEDs that are still attached to one another, letting you snap the LEDs apart at your leisure to sew into clothing or whatever else you can dream up. LilyPad is a wearable e-textile technology developed by Dr. Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad piece was creatively designed with large sew tabs to allow them to be sewn into fabric. Various input, output, power and sensor boards are available. They’re even washable (with special care)! Note: A portion of this sale is given back to Dr. Buechley for continued development and education in e-textiles. Features 5.5mm x 12.5mm Thin 0.8mm PCB | 5/5 | |||
LilyPad FTDI Basic Breakout - 5V This is the LilyPad revision of our FTDI Basic. It is the same as our other FTDI Basic, but has a purple LilyPad board which is half the thickness. This is a basic breakout board for the FTDI FT232RL USB to serial IC. The pinout of this board matches the FTDI cable to work with official Arduino and cloned 5V Arduino boards. It can also be used for general serial applications. The major difference with this board is that it brings out the DTR pin as opposed to the RTS pin of the FTDI cable. The DTR pin allows an Arduino target to auto-reset when a new Sketch is downloaded. This is a really nice feature to have and allows a sketch to be downloaded without having to hit the reset button. This board will auto reset any Arduino board that has the reset pin brought out to a 6-pin connector. The pins labeled BLK and GRN correspond to the colored wires on the FTDI cable. The black wire on the FTDI cable is GND, green is CTS. Use these BLK and GRN pins to align the FTDI basic board with your Arduino target. This board has TX and RX LEDs that make it a bit better to use over the FTDI cable. You can actually see serial traffic on the LEDs to verify if the board is working. This board was designed to decrease the cost of Arduino development and increase ease of use (the auto-reset feature rocks!). Our Arduino Pro boards and LilyPads use this type of connector. One of the nice features of this board is a jumper on the back of the board that allows the board to be configured to either 3.3V or 5V (both power output and IO level). This board ship as 5V, but you can cut the default trace and add a solder jumper if you need to switch to 3.3V. Note: We know a lot of you prefer microUSB over miniUSB. Never fear, we’ve got you covered! Check out our FT231X Breakout for your micro FTDI needs! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. | 1/1 | |||
LilyPad Buzzer This is a small buzzer for the LilyPad system. Use 2 I/O pins on the LilyPad main board and create different noises based on the different frequency of I/O toggling. Loud enough to hear inside a pocket but not obtrusively loud. Please note: This is an inductive buzzer meaning that is will act as a short to ground if you are not actively driving it. We recommend you put both I/O pins to low (0V) when the buzzer is not used. Also, it’s come to our attention that washing these buzzers will damage them. Until we’ve figured out a solution to this, avoid washing any portion of your project that contains one of these buzzers. LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Features 20mm outer diameter Thin 0.8mm PCB | 1/1 | |||
LilyPad Light Sensor This is a simple to use light sensor that outputs an analog value from 0 to 5V. With exposure to daylight, this sensor will output 5V. Covering the sensor with your hand, the sensor will output 0V. In a normal indoor lighting situation, the sensor will output from 1 to 2V. LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Features 20mm outer diameter Thin 0.8mm PCB | 1/1 | |||
LilyPad Button Board We designed this board to give the user a low profile button without any sharp edges. Button closes when you push it and opens when you release (momentary push button). LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Features 8x16mm Thin 0.8mm PCB | 1/1 | |||
LilyPad Slide Switch This is a simple slide switch for the LilyPad. Use it as a simple ON/OFF switch, or to control LEDs, buzzers, sensors, etc. The swtiches on each board are rated for 4 volts at 300mA, but will work at 5 volts with a reduction in current. LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Features 7.75x18.1mm Thin 0.8mm PCB | 1/1 | |||
LilyPad Temperature Sensor Detecting temperature changes has never been easier. The MCP9700 is a small thermistor type temperature sensor. This sensor will output 0.5V at 0 degrees C, 0.75V at 25 C, and 10mV per degree C. Doing an analog to digital conversion on the signal line will allow you to establish the local ambient temperature. Detect physical touch based on body heat and ambient conditions with this small sensor. LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Get Started with the LilyPad Temperature Sensor Guide Features 20mm outer diameter Thin 0.8mm PCB | 1/1 | |||
LilyPad Vibe Board Apply 5V and be shaken by this small, but powerful vibration motor. Works great as an physical indicator without notifying anyone but the wearer. This version uses a surface mount motor which is less likely to be damaged during use. LilyPad is a wearable technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Features 20mm outer diameter Thin 0.8mm PCB sparkfun lilypad board motor wearable development e-textile haptic motor off-set motor robotic sew vibe vibration | 1/1 | |||
LilyPad Tri-Color LED Blink any color you need! Use the Tri-Color LED board as a simple indicator, or by pulsing the red, green, and blue channels, you can create any color. Very bright output. This is a common anode design - to turn on a channel you simply need to ground one of the R/G/B pins to illuminate that channel. LilyPad is a wearable technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Get Started with the LilyPad Tri-Color LED Guide Features 20mm outer diameter Thin 0.8mm PCB | 1/1 |