Image | Item | Location | Available | |
---|---|---|---|---|
PowerBoost 500 Charger - Rechargeable 5V Lipo USB Boost @ 500mA+ PowerBoost 500C is the perfect power supply for your portable project! With a built-in battery charger circuit, you'll be able to keep your project running even while recharging the battery! This little DC/DC boost converter module can be powered by any 3.7V LiIon/LiPoly battery, and convert the battery output to 5.2V DC for running your 5V projects. If you need a 1A battery charger, smart load-sharing, and 1A iOS resistors, check out the Powerboost 1000C Like our popular 5V 1A USB wall adapter, we tweaked the output to be 5.2V instead of a straight-up 5.0V so that there's a little bit of 'headroom' for long cables, high draw, the addition of a diode on the output if you wish, etc. The 5.2V is safe for all 5V-powered electronics like Arduino, Raspberry Pi, or Beagle Bone while preventing icky brown-outs during high current draw because of USB cable resistance. The PowerBoost 500C has at the heart a TPS61090 boost converter from TI. This boost converter chip has some really nice extras such as low battery detection, 2A internal switch, synchronous conversion, excellent efficiency, and 700KHz high-frequency operation. Check out these specs! Synchronous operation means you can disconnect the output completely by connecting the ENable pin to ground. This will completely turn off the output 2A internal switch (~2.5A peak limiting) means you can get 500mA+ from a 3.7V LiPoly/LiIon battery. We had no problem drawing 1000mA, just make sure your battery can handle it! Low battery indicator LED lights up red when the voltage dips below 3.2V, optimized for LiPo/LiIon battery usage Onboard 500mA charge-rate 'iOS' data resistors. Solder in the USB connector and you can plug in any iPhone or iPod for 500mA charge rate. Not suggested for large iPads. Full breakout for battery in, control pins and power out 90%+ operating efficiency in most cases (see datasheet for efficiency graphs), and low quiescent current: 5mA when enabled and power LED is on, 20uA when disabled (power and low batt LED are off) To make this even more useful, we stuck a MicroLipo charger on the other side. The charger circuitry is powered from a microUSB jack, and will recharge any 3.7V/4.2V LiIon or LiPoly battery at 500mA max rate. There's two LEDs for monitoring the charge rate, a yellow one tells you its working, a green one lights up when its done. You can charge and boost at the same time no problem, without any interruption on the output so its fine for use as a "UPS" (un-interruptable power supply) for a low-current draw device. Just be aware that the charge rate is 500mA max, so if you're drawing more than ~300mA continuously from the 5V output side, the battery will slowly drain since the charge rate is less than the dis-charge rate. Great for powering your robot, Arduino project, single-board-computer such as Raspberry Pi or BeagleBone! Each order comes with one fully assembled and tested PCB and a loose USB A jack. If you are powering your project from USB, solder the USB A jack in (a 3-minute soldering task). If you would like to use a terminal block, pick up a 3.5mm 2pin block here and solder to the output spot where the USB jack would go. Or don't solder anything in for a more compact power pack. Each order comes with a fully assembled and tested PowerBoost 500C + USB jack. Does not come with a Lipoly or LiIon battery, but we have tons in the shop, just pick one with more than 500mAh of capacity. Also doesn't come with the nice iPhone or charger cable. You can also grab a switch that can be soldered in to create an output on/off switch. Be sure to read our lovely tutorial for details, schematics, and more! If you're trying to figure out how much current your project is using, check out the CHARGER DOCTOR! | 1/1 | |||
PowerBoost 1000 Charger - Rechargeable 5V Lipo USB Boost @ 1A - 1000C PowerBoost 1000C is the perfect power supply for your portable project! With a built-in load-sharing battery charger circuit, you'll be able to keep your power-hungry project running even while recharging the battery! This little DC/DC boost converter module can be powered by any 3.7V LiIon/LiPoly battery, and convert the battery output to 5.2V DC for running your 5V projects. If you dont need the 1A battery charger, smart load-sharing, or 1A iOS resistors, check out the Powerboost 500CLike our popular 5V 1A USB wall adapter, we tweaked the output to be 5.2V instead of a straight-up 5.0V so that there's a little bit of 'headroom' for long cables, high draw, the addition of a diode on the output if you wish, etc. The 5.2V is safe for all 5V-powered electronics like Arduino, Raspberry Pi, or Beagle Bone while preventing icky brown-outs during high current draw because of USB cable resistance. The PowerBoost 1000C has at the heart a TPS61090 boost converter from TI. This boost converter chip has some really nice extras such as low battery detection, 2A internal switch, synchronous conversion, excellent efficiency, and 700KHz high-frequency operation. Check out these specs! Synchronous operation means you can disconnect the output completely by connecting the ENable pin to ground. This will completely turn off the output 2A internal switch (~2.5A peak limiting) means you can get 1000mA+ from a 3.7V LiPoly/LiIon battery. Just make sure your battery can handle it! Low battery indicator LED lights up red when the voltage dips below 3.2V, optimized for LiPo/LiIon battery usage Onboard 1000mA charge-rate 'iOS' data resistors. Solder in the USB connector and you can plug in any iPad, iPhone or iPod for 1000mA charge rate. Full breakout for battery in, control pins and power out 90%+ operating efficiency in most cases (see datasheet for efficiency graphs), and low quiescent current: 5mA when enabled and power LED is on, 20uA when disabled (power and low batt LED are off) To make this even more useful, we stuck a smart load-sharing Lipoly charger on the other side. The charger circuitry is powered from a microUSB jack, and will recharge any 3.7V/4.2V LiIon or LiPoly battery at 1000mA max rate. There's two LEDs for monitoring the charge rate, a yellow one tells you its working, a green one lights up when its done. Since the built-in battery charger has load-sharing, it will automatically switch over to the USB power when available, instead of continuously charging/draining the battery. This is more efficient, and lets you charge-and-boost at the same time without any interruption on the output so its fine for use as a "UPS" (un-interruptable power supply). Just be aware that the charge rate is 1000mA max, and there's some inefficiency during the boosting stage, so make super sure that the USB adapter you're using to charge with is high quality, can supply 2A and has thick power wires. This one from Adafruit is ideal and has been tested, lower quality ones will not act well due to the voltage drop on the wires or droop on the power supply. This is especially true if you're actually drawing 1000mA out of the PowerBoost 1000C, the MCP73871 maxes out at 1.8A.You do have to always have a LiPo plugged into manage the load spikes, it's not optional! This charger-booster is great for powering your robot, Arduino project, single-board-computer such as Raspberry Pi or BeagleBone! Each order comes with one fully assembled and tested PCB and a loose USB A jack. If you are powering your project from USB, solder the USB A jack in (a 3-minute soldering task). If you would like to use a terminal block, pick up a 3.5mm 2pin block here and solder to the output spot where the USB jack would go. Or dont solder anything in for a more compact power pack. If you're trying to figure out how much current your project is using, check out the CHARGER DOCTOR! You may get an off-white or black JST connector. | 1/1 | |||
QTR-1RC Reflectance Sensor (2-Pack) The QTR-1RC reflectance sensor carries a single infrared LED and phototransistor pair in an inexpensive, tiny 0.5" x 0.3" module that can be mounted almost anywhere and is great for edge detection and line following. The output is designed to be measured by a digital I/O line. This sensor is sold in packs of two units. Note: The QTR-1RC reflectance sensor requires a digital I/O line to take readings. The similar QTR-1A reflectance sensor is available with an analog output. Functional description The Pololu QTR-1RC reflectance sensor carries a single infrared (IR) LED and phototransistor pair. To use the sensor, you must first charge the output node by applying a voltage to the OUT pin. You can then read the reflectance by withdrawing the externally supplied voltage and timing how long it takes the output voltage to decay due to the integrated phototransistor. Shorter decay time is an indication of greater reflection. This measurement approach has several advantages, especially when multiple units are used: No analog-to-digital converter (ADC) is required Improved sensitivity over voltage-divider analog output Parallel reading of multiple sensors is possible with most microcontrollers The LED current-limiting resistor is set to deliver approximately 17 mA to the LED when VIN is 5 V. The current requirement can be met by some microcontroller I/O lines, allowing the sensor to be powered up and down through an I/O line to conserve power. This sensor was designed to be used with the board parallel to the surface being sensed. Because of its small size, multiple units can easily be arranged to fit various applications such as line sensing and proximity/edge detection. For a line sensor with eight of these units arranged in a row, please see the QTR-8RC reflectance sensor array; for a similar array of three slightly different sensor components, see the QTR-3RC. For a similar, smaller sensor with longer range, and intended for use with the board perpendicular to the surface, please see the QTR-L-1RC reflectance sensor. QTR sensor size comparison. Clockwise from top left: QTR-3RC, QTR-1RC, QTR-L-1RC, QTR-8RC. Specifications Dimensions: 0.3" x 0.5" x 0.1" (without optional header pins installed) Operating voltage: 5.0 V Supply current: 17 mA Output format: digital I/O-compatible signal that can be read as a timed high pulse Optimal sensing distance: 0.125" (3 mm) Maximum recommended sensing distance: 0.375" (9.5 mm) Weight without header pins: 0.008 oz (0.2 g) QTR-1RC output (yellow) when 1/8" above a black line and microcontroller timing of that output (blue). Interfacing the QTR-1RC output to a digital I/O line Like the Parallax QTI, this sensor requires a digital I/O line capable of driving the output line high and then measuring the time for the output voltage to decay. The typical sequence for reading a sensor is: Set the I/O line to an output and drive it high. Allow at least 10 μs for the sensor output to rise. Make the I/O line an input (high impedance). Measure the time for the voltage to decay by waiting for the I/O line to go low. These steps can typically be executed in parallel on multiple I/O lines. With a strong reflectance, the decay time can be as low as several dozen microseconds; with no reflectance, the decay time can be up to a few milliseconds. The exact time of the decay depends on your microcontroller’s I/O line characteristics. Meaningful results can be available within 1 ms in typical cases (i.e. when not trying to measure subtle differences in low-reflectance scenarios), allowing up to 1 kHz sampling. Our Pololu AVR library provides functions that make it easy to use these sensors with our Orangutan robot controllers; please see the QTR Reflectance Sensors section of our library command reference for more information. We also have a Arduino library for these sensors. Included components This module has a single mounting hole intended for a #2 screw (not included); if this mounting hole is not needed, this portion of the PCB can be ground off to make the unit even smaller. Each pack of two reflectance sensors includes sets of straight male header strips and right-angle male header strips, which allow you to mount them in the orientation of your choice (note: the header pins might ship as 1×6 strips that you can break into two 1×3 pieces). You can also solder wires, such as ribbon cable, directly to the pads for the most compact installation. How it works in detail With only four components (or five, if you count the coupled IR LED and phototransistor separately), the operation of this sensor is relatively basic. The emitter side is just an IR LED with an appropriate current-limiting resistor. The light from the emitter leaves the sensor, reflects off a nearby surface, and returns to the detector. The detector side is a resistor-capacitor (RC) circuit, where the resistance comes from the phototransistor and is a measure of the incident infrared light, and the decay time is proportional to the resistance. The first step of the sensor-reading process—driving the sensor output high—discharges the integrated 10 nF capacitor and puts both sides at the same voltage (VIN). Alternatively, you can think of this as “charging the output node”, and it is functionally equivalent to charging a capacitor with one side connected to ground. Once you are no longer supplying an external voltage to the output pin, the capacitor can slowly charge through the phototransistor, with the rate of charging being a function of the phototransistor’s resistance (which is in turn a function of the incident IR). As the capacitor charges, the voltage on the output side drops, eventually reaching zero when the capacitor is fully charged. Alternatively, you can think of this as “discharging the output node”, and it is functionally equivalent to discharging a capacitor with one side connected to ground. The 220 Ω resistor on the OUT line serves to limit the current flow, making it possible for a microcontroller output to safely charge the output node prior to each reading. It has very little effect on the sensor output. QTR-1RC and QTR-L-1RC reflectance sensor schematic diagram. QTR-1RC output (yellow) when 1/8" above a white/black interface and microcontroller timing of that output (blue). People often buy this product together with: | 2/2 | |||
LilyPad LED White (5pcs) This is a simple pack of five White LilyPad LEDs that are still attached to one another, letting you snap the LEDs apart at your leisure to sew into clothing or whatever else you can dream up. LilyPad is a wearable e-textile technology developed by Dr. Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad piece was creatively designed with large sew tabs to allow them to be sewn into fabric. Various input, output, power and sensor boards are available. They’re even washable (with special care)! Note: A portion of this sale is given back to Dr. Buechley for continued development and education in e-textiles. Features 5.5mm x 12.5mm Thin 0.8mm PCB | 5/5 |