Image | Item | Location | Available | |
---|---|---|---|---|
Mini Speaker - PC Mount 12mm 2.048kHz This is a small 12mm round speaker that operates around the audible 2kHz range. You can use these speakers to create simple music or user interfaces. This is not a true piezoelectric speaker but behaves similarly. Instead of a piezoelectric crystal that vibrates with an electric current, this tiny speaker uses an electromagnet to drive a thin metal sheet. That means you need to use some form of alternating current to get sound. The good news is that this speaker is tuned to respond best with a square wave (e.g. from a microcontroller). | 1/1 | |||
Adafruit DRV2605L Haptic Motor Controller The DRV2605 from TI is a fancy little motor driver. Rather than controlling a stepper motor or DC motor, its designed specifically for controlling haptic motors - buzzers and vibration motors. Normally one would just turn those kinds of motors on and off, but this driver has the ability to have various effects when driving a vibe motor. For example, ramping the vibration level up and down, 'click' effects, different buzzer levels, or even having the vibration follow a musical/audio input. This chip is controlled over I2C - after initialization, a 'string' of multiple effects can be strung together in the chips memory and then triggered to actuate in a row. The built in effects are much much nicer than just 'on' and 'off' and will make your haptic project way nicer feeling. According to the product page, it can be used with both LRA (Linear Resonance Actuator) and ERM (Eccentric Rotating Mass) type motors but we have only used it with our little vibration pancake ERM. We put this nice chip onto a breakout board. it works with both 3V and 5V power/logic, we have code specifically for Arduino but porting it to any I2C-capable processor should be quite simple. Check it out and get buzzing! | 12/12 | |||
Grove - Buzzer This is a simple yet enjoyable twig to use. The piezo can be connected to digital outputs, and will emit a tone when the output is high. Alternatively it can be connected to an analog pulse-width modulation output to generate various tones and effects. | 1/1 | |||
LilyPad Buzzer This is a small buzzer for the LilyPad system. Use 2 I/O pins on the LilyPad main board and create different noises based on the different frequency of I/O toggling. Loud enough to hear inside a pocket but not obtrusively loud. Please note: This is an inductive buzzer meaning that is will act as a short to ground if you are not actively driving it. We recommend you put both I/O pins to low (0V) when the buzzer is not used. Also, it’s come to our attention that washing these buzzers will damage them. Until we’ve figured out a solution to this, avoid washing any portion of your project that contains one of these buzzers. LilyPad is a wearable e-textile technology developed by Leah Buechley and cooperatively designed by Leah and SparkFun. Each LilyPad was creatively designed to have large connecting pads to allow them to be sewn into clothing. Various input, output, power, and sensor boards are available. They’re even washable! Note: A portion of this sale is given back to Dr. Leah Buechley for continued development and education of e-textiles. Features 20mm outer diameter Thin 0.8mm PCB | 1/1 |