Image | Item | Location | Available | |
---|---|---|---|---|
SparkFun Block for Intel® Edison - I2C The Intel® Edison is an ultra small computing platform that will change the way you look at embedded electronics. Each Edison is packed with a huge amount of tech goodies into a tiny package while still providing the same robust strength of your go-to single board computer. Powered by the Intel® Atom™ SoC dual-core CPU and including an integrated WiFi, Bluetooth LE, and a 70-pin connector to attach a veritable slew of shield-like “Blocks” which can be stacked on top of each other. It’s no wonder how this little guy is lowering the barrier of entry on the world of electronics! This I2C Block simply breaks out an I2C bus on the Intel® Edison while level shifting it from 1.8V to your sensors voltage. This a simple board that can snap into your Edison and be used right away. If you are looking to add a little more stability to your Intel® Edison stack, check out this Hardware Pack. It will provide you with increased mechanical strength for stacking Blocks on your Edison! | 5/5 | |||
SparkFun Altitude/Pressure Sensor Breakout - MPL3115A2 Life has its ups and downs, so why not measure them? The MPL3115A2 is a MEMS pressure sensor that provides Altitude data to within 30cm (with oversampling enabled). The sensor outputs are digitized by a high resolution 24-bit ADC and transmitted over I2C, meaning it’s easy to interface with most controllers. Pressure output can be resolved with output in fractions of a Pascal, and Altitude can be resolved in fractions of a meter. The device also provides 12-bit temperature measurements in degrees Celsius. This breakout board makes it easy to prototype using this tiny device by breaking out the necessary pins to a standard 0.1" spaced header. The board also has all of the passive components needed to get the device functioning, so you can simply connect it to something that talks I2C and get to work! Features 1.95V to 3.6V Supply Voltage, internally regulated by LDO 1.6V to 3.6V Digital Interface Supply Voltage Fully Compensated internally Direct Reading, Compensated Pressure: 20-bit measurement (Pascals) Altitude: 20-bit measurement (meters) Temperature: 12-bit measurement (degrees Celsius) Pressure: 20-bit measurement (Pascals) Altitude: 20-bit measurement (meters) Temperature: 12-bit measurement (degrees Celsius) Programmable Events Autonomous Data Acquisition Resolution down to 1 ft. / 30 cm 32 Sample FIFO Ability to log data up to 12 days using the FIFO 1 second to 9 hour data acquisition rate I2C digital output interface (operates up to 400 kHz) | 1/1 | |||
SparkFun Atmospheric Sensor Breakout - BME280 The SparkFun BME280 Atmospheric Sensor Breakout is the easy way to measure barometric pressure, humidity, and temperature readings all without taking up too much space. Basically, anything you need to know about atmospheric conditions you can find out from this tiny breakout. The BME280 Breakout has been design to be used in indoor/outdoor navigation, weather forecasting, home automation, and even personal health and wellness monitoring. The on-board BME280 sensor measures atmospheric pressure from 30kPa to 110kPa as well as relative humidity and temperature. The breakout provides a 3.3V SPI interface, a 5V tolerant I2C interface (with pull-up resistors to 3.3V), takes measurements at less than 1mA and idles less than 5µA. The BME280 Breakout board has 10 pins, but no more than six are used at a single time. The left side of the board provide power, ground, and I2C pins. The remaining pins which provide SPI functionality and have another power and ground, are broken out on the other side. Note: The breakout does NOT have headers installed and will need to purchased and soldered on yourself. Check the Recommended Products section below for the type of headers we use in the Hookup Guide! Features Operation Voltage: 3.3V I2C & SPI Communications Interface Temp Range: -40C to 85C Humidity Range: 0 - 100% RH, =-3% from 20-80% Pressure Range: 30,000Pa to 110,000Pa, relative accuracy of 12Pa, absolute accuracy of 100Pa Altitude Range: 0 to 30,000 ft (9.2 km), relative accuracy of 3.3 ft (1 m) at sea level, 6.6 (2 m) at 30,000 ft. Incredibly Small | 3/3 | |||
SparkFun RGB and Gesture Sensor - APDS-9960 This is the SparkFun RGB and Gesture Sensor, a small breakout board with a built in APDS-9960 sensor that offers ambient light and color measuring, proximity detection, and touchless gesture sensing. With this RGB and Gesture Sensor you will be able to control a computer, microcontroller, robot, and more with a simple swipe of your hand! This is, in fact, the same sensor that the Samsung Galaxy S5 uses and is probably one of the best gesture sensors on the market for the price. The APDS-9960 is a serious little piece of hardware with built in UV and IR blocking filters, four separate diodes sensitive to different directions, and an I2C compatible interface. For your convenience we have broken out the following pins: VL (optional power to IR LED), GND (Ground), VCC (power to APDS-9960 sensor), SDA (I2C data), SCL (I2C clock), and INT (interrupt). Each APDS-9960 also has a detection range of 4 to 8 inches (10 to 20 cm). Features Operational Voltage: 3.3V Ambient Light & RGB Color Sensing Proximity Sensing Gesture Detection Operating Range: 4-8in (10-20cm) I2C Interface (I2C Address: 0x39) | 2/2 | |||
SparkFun Humidity and Temperature Sensor Breakout - Si7021 The Si7021 is a low-cost, easy-to-use, highly accurate, digital humidity and temperature sensor. This sensor is ideal for environmental sensing and data logging and perfect for build a weather stations or humidor control system. All you need are two lines for I2C communication, and you’ll have relative humidity readings and very accurate temperature readings as a bonus! There are only four pins that need to be hooked up in order to start using this sensor in a project. One for VCC, one for GND, and two data lines for I2C communication. This breakout board has built-in 4.7KΩ pullup resistors for I2C communications. If you’re hooking up multiple I2C devices on the same bus, you may want to disable these resistors. Features 0.6" x 0.6" | 1/1 | |||
SparkFun ToF Range Finder Sensor - VL6180 This is the SparkFun “Time-of-Flight” Range Finder, a sensor board for the VL6180 distance sensor. Unlike most distance sensors that rely on reflected light intensity or reflected angles to determine range, the VL6180 uses a precise clock to measure the time it takes light to bounce back from a surface. This affords the ToF Range Finder and VL6180 a great benefit over other methods because it can be much more accurate and more immune to noise. Does this technology sound familiar? Well it should, it’s the same means cellphones use to detect when the caller is holding their phone to their ear. The VL6180 is actually a 3-in-1 package that combines an IR emitter, a range sensor, and an ambient light sensor together for you to easily use and communicate with via an I2C interface. The ToF Range Finder is very similar to its breakout cousin with a few important differences. What sets this board apart is this sensor is equipped with an on-board 2.8V regulator, which means if you were to plug in a voltage higher than 2.8V it will be shifted down without worry of damaging your board! Another thing to note is the form factor of the sensor itself. Many small robotics platforms have integrated hole patterns for the long time favorite Sharp IR sensor line. This allows the VL6180 Sensor to be a near drop-in replacement for most Sharp sensors. Note: Though the datasheet states the VL6180 measures an absolute range of up to 10cm, we have successfully tested it up to 25cm. The more you know. Features 2.8V Regulator - Provides the required 2.8V for the sensor I2C Level Shifter - Provides logic level conversion from 2.8V to VCC 3-in-1 Module IR Emitter Range Sensor Ambient Light Sensor IR Emitter Range Sensor Ambient Light Sensor Measures absolute range up to 10cm Gesture Recognition I2C Interface Two Programmable GPIO Sharp Sensor Board Layout | 1/1 | |||
Bus Pirate - BPv3.6 - v3.6 Interfacing a new microchip can be a hassle. Breadboarding a circuit, writing code, hauling out the programmer, or maybe even prototyping a PCB. We never seem to get it right on the first try. The 'Bus Pirate' is a universal bus interface that talks to most chips from a PC serial terminal, eliminating a ton of early prototyping effort when working with new or unknown chips. Many serial protocols are supported at 0-5.5volts, more can be added. Adafruit is the official US distributor of Ian Lesnet's Bus Pirate, each purchase directly supports Dangerous Prototypes! You may also want to pick up a probe set. Protocols: 1-Wire, I2C, SPI, JTAG, asynchronous serial (UART), MIDI, PC keyboard, HD44780 LCDs, and generic 2- and 3-wire libraries for custom protocols. Features: USB interface, USB powered 0-5.5volt tolerant pins 0-6volt measurement probe 1Hz-40MHz frequency measurement 1kHz - 4MHz pulse-width modulator, frequency generator On-board multi-voltage pull-up resistors On-board 3.3volt and 5volt power supplies with software reset Macros for common operations Bus traffic sniffers (SPI, I2C) A bootloader for easy USB firmware updates Transparent USB->serial bridge mode 10Hz-1MHz low-speed logic analyzer Custom support in AVRDUDE, Flashrom AVR STK500 v2 programmer clone Scriptable from Perl, Python, etc. Translations (currently Spanish and Italian) | 1/1 | |||
Stereo 2.8W Class D Audio Amplifier - I2C Control AGC - TPA2016 A mini class D with AGC and I2C control? Yes please! This incredibly small stereo amplifier is surprisingly powerful. It is able to deliver 2 x 2.8W channels into 4 ohm impedance speakers (@ 10% THD) and it has a i2c control interface as well as an AGC (automatic gain control) system to keep your audio from clipping or distorting.If you don't want to use I2C to control it, it does start up on with 6dB gain by default and the AGC set up for most music playing. We do suggest using it with a microcontroller to configure it, however, since its quite powerful. Settings are not stored in the chip, so you'll need to adjust any gain & AGC amplification settings every time the amp is powered up.Inside the miniature chip is a class D controller, able to run from 2.7V-5.5VDC. Since the amp is a class D, it's incredibly efficient (89% efficient when driving an 8Ω speaker at 1.5 Watt) - making it perfect for portable and battery-powered projects. It has built in thermal and over-current protection but we could barely tell if it got hot. This board is a welcome upgrade to basic "LM386" amps!The inputs of the amplifier go through 1.0uF capacitors, so they are fully 'differential' - if you don't have differential outputs, simply tie the R- and L- to ground. The outputs are "Bridge Tied" - that means they connect directly to the outputs, no connection to ground. The output is a ~300KHz square wave PWM that is then 'averaged out' by the speaker coil - the high frequencies are not heard. All the above means that you can't connect the output into another amplifier, it should drive the speakers directly.Comes with a fully assembled and tested breakout board with 1.0uF input capacitors. We also include 3.5mm screw-terminal blocks so you can easily attach/detach your speakers, and some header in case you want to plug it into a breadboard. Speakers are not included, use any 4 ohm or 8 ohm impedance speakers.Our awesome tutorial and Arduino library will let you set the AGC configuration (you can also just turn it off), max gain, and turn on/off the left & right channels all over I2C! You will be ready to rock in 20 minutes! Note: The terminal blocks included with your product may be blue or black. Stereo 2.8W Class D Audio Amplifier - I2C Control AGC - TPA2016 (6:10) | 1/1 | |||
SparkFun Micro OLED Breakout The SparkFun Micro OLED Breakout Board breaks out a small monochrome, blue-on-black OLED. It’s “micro”, but it still packs a punch – the OLED display is crisp, and you can fit a deceivingly large amount of graphics on there. This breakout is perfect for adding graphics to your next Arduino project, displaying diagnostic information without resorting to serial output, and teaching a little game theory while creating a fun, Arduino-based video game. Most important of all, though, is the Micro OLED is easy to control over either an SPI or I2C interface. You may be asking yourself, “Why does this board look so familiar?” Yes, this is essentially a MicroView without the Arduino portion. We understand that sometimes you just need a breakout, an open door for you to explore the possibilities of a super small OLED screen. Speaking of, the screen on this breakout is only 64 pixels wide and 48 pixels tall, measuring 0.66" across. In total, the Micro OLED Breakout provides access to 16 of the OLED’s pins. Fortunately, though, you’ll only need about half of them to make the display work. The top row of pins (GND-CS) breaks out everything you’d need to interface with the OLED over an SPI or I2C interface. The pins on the bottom (D7-vB) are mostly only used if you need to control the display over a parallel interface. This board operates at 3.3V with a current of 10mA (20mA max). Get Started with the SparkFun Micro OLED Breakout Guide Features Operating Voltage: 3.3V Screen Size: 64x48 pixels (0.66" Across) Monochrome Blue-on-Black SPI or I2C Interface | 1/1 | |||
Audio Adapter Board for Teensy 3.0 - 3.2, 3.5 and 3.6 This audio adapter lets you easily add high quality 16 bit, 44.1 kHz sample rate (CD quality) audio to your projects with a Teensy 3.2, 3.5 or 3.6. It supports stereo headphone and stereo line-level output, and also stereo line-level input or mono microphone input.The audio chip connects to Teensy v3 using 7 signals. The I2C pins SDA and SCL are used to control the chip and adjust parameters. Audio data uses I2S signals, TX (to headphones and/or line out) and RX (from line in or mic), and 3 clocks, LRCLK (44.1 kHz), BCLK (1.41 MHz) and MCLK (11.29 MHz). All 3 clocks are created by Teensy 3.1. The SGTL5000 chip operates in "slave mode", where all its clock pins are inputs. As of February 23rd, 2015 we are shipping an updated version with a few minor changes.This product does NOT include a Teensy, it's just the audio adapter! | 3/3 | |||
L3GD20H Triple-Axis Gyro Breakout Board - L3GD20/L3G4200 Upgrade - L3GD20H A gyroscope is a type of sensor that can sense twisting and turning motions. Often paired with an accelerometer, you can use these to do 3D motion capture and inertial measurement (that is - you can tell how an object is moving!) As these sensors become more popular and easier to manufacture, the prices for them have dropped to the point where you can easily afford a triple-axis gyro! Only a decade ago, this space-tech sensor would have been hundreds of dollars.This breakout board is based around the latest gyro technology, the L3GD20H from STMicro. It's the upgrade to the L3G4200 (see this app note on what to look for if upgrading an existing design to the L3GD20) with three full axes of sensing. The chip can be set to ±250, ±500, or ±2000 degree-per-second scale for a large range of sensitivity. There's also built in high and low pass sensing to make data processing easier. The chip supports both I2C and SPI so you can interface with any microcontroller easily.Since this chip is a 3.3V max device, but many of our customers want to use it with an Arduino, we soldered it to a breakout board with level shifting circuitry so you can use the I2C or SPI interface safely using a 5V interface device. We also place a 3.3V regulator on there so you can power it from 5V.Since we expect people will want to attach it firmly to their project, the PCB comes with four 2.1mm mounting holes. Use #2-56 imperial or M2 screws screws.Getting started is easy - simply connect SDA to your Arduino I2C data pin (On the UNO this is A4), SCL to I2C clock (Uno: A5), GND to ground, and Vin to 3 or 5VDC. Then install and run our easy to use Arduino library, which will print out the XYZ sensor data to the serial terminal. Our library also supports SPI on any 4 digital I/O pins, see the example for wiring. | 1/1 | |||
Adafruit Precision NXP 9-DOF Breakout Board - FXOS8700 + FXAS21002 The NXP Precision 9DoF breakout combines two of the best motion sensors we've tested here at Adafruit: The FXOS8700 3-Axis accelerometer and magnetometer, and the FXAS21002 3-axis gyroscope. These two sensors combine to make a nice 9-DoF kit, that can be used for motion and orientation sensing. In particular, we think this sensor set is ideal for AHRS-based orientation calculations: the gyro stability performance is superior to the LSM9DS0, LSM9DS1, L3GD20H + LSM303, MPU-9250, and even the BNO-055 (see our Gyro comparison tutorial for more details). Compared to the BNO055, this sensor will get you similar orientation performance but at a lower price because the calculations are done on your microcontroller, not in the sensor itself. The trade off is you will sacrifice about 15KB of Flash space, and computing cycles, to do the math 'in house.' To make it fast and easy for you to get started, we have a version of AHRS that we've adapted to work over USB or Bluetooth LE. Load the code onto your Arduino-compatible board and you will get orientation data in the form of Euler angles or quaternions! It will work on a ATmega328 (the fusion code is 15KB of flash) but faster/larger chips such as M0 or ESP8266 will give you more breathing room. Each board comes with the two chips soldered onto a breakout with 4 mounting holes. While the chips support SPI, they don't tri-state the MISO pin, so we decided to go with plain I2C which works well and is supported by every modern microcontroller and computer chip set. There's a 3.3V regulator and level shifting on the I2C and Reset lines, so you can use the breakout safely with 3.3V or 5V power/logic. Each order comes with a fully assembled and tested breakout and a small strip of header. Some light soldering is required to attach the header if you want to use in a breadboard. Our tutorial will get you started with wiring diagrams, pinouts, assembly instructions and library code with examples! So what makes this so 'Precision'-y, eh? Glad you asked! This particular sensor combination jumped out at us writing the Comparing Gyroscopes learning guide since the FXAS21002 exhibited the lowest zero-rate level of any of the gyroscopes we've tested, with the the following documented levels (converted to degrees per second for convenience sake): At +/- 2000 dps 3.125 dps At +/- 250 dps 0.3906 dps The zero-rate level is important in orientation since it represents the amount of angular velocity a gyroscope will report when the device is immobile. High zero-rate levels can cause all kinds of problems in orientation systems if the data isn't properly compensated out, and distinguishing zero-rate errors from actual angular velocity can be non-trivial. This is particularly important in sensor fusion algorithms where the gyroscope plays an important part in predicting orientation adjustments over time. A high zero-rate level will cause constant rotation even when the device is immobile! By comparison, most other sensors tested have 10-20 times these zero-rate levels, which is why we consider this particular part very precise. There is little work to do out of the box to get useful, actionable data out of it. | 0/1 | |||
ADXL345 - Triple-Axis Accelerometer (+-2g/4g/8g/16g) w/ I2C/SPI Filling out our accelerometer offerings, we now have the really lovely digital ADXL345 from Analog Devices, a triple-axis accelerometer with digital I2C and SPI interface breakout. We added an on-board 3.3V regulator and logic-level shifting circuitry, making it a perfect choice for interfacing with any 3V or 5V microcontroller such as the Arduino.The sensor has three axes of measurements, X Y Z, and pins that can be used either as I2C or SPI digital interfacing. You can set the sensitivity level to either +-2g, +-4g, +-8g or +-16g. The lower range gives more resolution for slow movements, the higher range is good for high speed tracking. The ADXL345 is the latest and greatest from Analog Devices, known for their exceptional quality MEMS devices. The VCC takes up to 5V in and regulates it to 3.3V with an output pin.Fully assembled and tested. Comes with 9 pin 0.1" standard header in case you want to use it with a breadboard or perfboard. Two 2.5mm (0.1") mounting holes for easy attachment.Get started in a jiffy with our detailed tutorial! ADXL345 - Triple-Axis Accelerometer (+-2g/4g/8g/16g) w/ I2C/SPI (16:05) | 1/1 | |||
SparkFun 6 Degrees of Freedom Breakout - LSM6DS3 The LSM6DS3 is a accelerometer and gyroscope sensor with a giant 8kb FIFO buffer and embedded processing interrupt functions, specifically targeted at the cellphone market. Due to the capabilities and low cost of the LSM6DS3 we’ve created this small breakout board just for you! Each LSM6DS3 Breakout has been designed to be super-flexible and can be configured specifically for many applications. With the LSM6DS3 Breakout you will be able to detect shocks, tilt, motion, taps, count steps, and even read the temperature! The LSM6DS3 is capable of reading accelerometer data up to 6.7kS/s and gyroscope data up to 1.7kS/s for more accurate movement sensing. As stated before this breakout also has the ability to buffer up to 8kB of data between reads, host other sensors, and drive interrupt pins all thanks to the LSM6DS3’s built-in FIFO. Each pin has been broken out on the LSM6DS3, with one side of the board featuring power and I2C functionality while the other side sporting pins that control SPI functionality and interrupt outputs. Please keep in mind that the LSM6DS3 is a 3.3V device so supplying voltages greater than ~3.6V can permanently damage the IC. A logic level shifter is required for any development platform operating at 5V. Features Power consumption: 0.9 mA in combo normal mode and 1.25 mA in combo high-performance mode up to 1.6 kHz. “Always on” experience with low power consumption for both accelerometer and gyroscope Smart FIFO up to 8 kbyte based on features set ±2/±4/±8/±16 g full scale ±125/±245/±500/±1000/±2000 dps full scale Analog supply voltage: 1.71 V to 3.6 V SPI/I2C serial interface with main processor data synchronization feature Embedded temperature sensor | 3/3 | |||
SparkFun 9DoF IMU Breakout - LSM9DS1 The LSM9DS1 is a versatile, motion-sensing system-in-a-chip. It houses a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer – nine degrees of freedom (9DOF) in a single IC! The LSM9DS1 is equipped with a digital interface, but even that is flexible: it supports both I2C and SPI, so you’ll be hard-pressed to find a microcontroller it doesn’t work with. This IMU-in-a-chip is so cool we put it on the quarter-sized breakout board you are currently viewing! The LSM9DS1 is one of only a handful of IC’s that can measure three key properties of movement – angular velocity, acceleration, and heading – in a single IC. By measuring these three properties, you can gain a great deal of knowledge about an object’s movement and orientation. The LSM9DS1 measures each of these movement properties in three dimensions. That means it produces nine pieces of data: acceleration in x/y/z, angular rotation in x/y/z, and magnetic force in x/y/z. The LSM9DS1 Breakout has labels indicating the accelerometer and gyroscope axis orientations, which share a right-hand rule relationship with each other. Each sensor in the LSM9DS1 supports a wide spectrum of ranges: the accelerometer’s scale can be set to ± 2, 4, 8, or 16 g, the gyroscope supports ± 245, 500, and 2000 °/s, and the magnetometer has full-scale ranges of ± 4, 8, 12, or 16 gauss. Get Started with the LSM9DS1 Breakout Guide Features 3 acceleration channels, 3 angular rate channels, 3 magnetic field channels ±2/±4/±8/±16 g linear acceleration full scale ±4/±8/±12/±16 gauss magnetic full scale ±245/±500/±2000 dps angular rate full scale SPI / I2C serial interfaces Operating Voltage: 3.3V | 4/4 | |||
SparkFun 6 Degrees of Freedom Breakout - LSM303C The LSM303C is a 6 Degrees of Freedom (6DOF) inertial measurement unit (IMU) in a single package, specifically developed as an eCompass device. Due to the IC housing a 3-axis accelerometer and a 3-axis magnetometer combined with its low cost, the LSM303C was perfect for us to create this small breakout board just for you! Each LSM303C Breakout has been designed to be super-flexible and can be configured specifically for many applications. The LSM303C Breakout can be configured to generate an interrupt signal for free-fall, motion detection and magnetic field detection! The range of each sensor on the LSM303C is configurable: the accelerometer’s scale can be set to ±2g, ±4g, ±6g, or ±8g, while the magnetometer has full-scale range of ±16 gauss, and supports I2C and SPI communication. Each pin has been broken out on the LSM303C, with 10 plated through-hole connections featuring power and I2C and SPI functionality, interrupt outputs, and accelerometer and magnetometer data out. Please keep in mind that the LSM303C is a 2.5V device so supplying voltages greater than ~4.8V can permanently damage the IC. As long as your Arduino has a 3.3V supply output, you shouldn’t need any extra level shifting. Features 3 magnetic field channels and 3 acceleration channels ±16 gauss magnetic full scale ±2/±4/±8 g selectable acceleration full scale 16-bit data output SPI / I2C serial interfaces Analog supply voltage 1.9 V to 3.6 V Power-down mode / low-power mode Programmable interrupt generators for freefall, motion detection and magnetic field detection Embedded temperature sensor Embedded FIFO | 1/1 | |||
SparkFun Triple Axis Accelerometer Breakout - MMA8452Q This breakout board makes it easy to use the tiny MMA8452Q accelerometer in your project. The MMA8452Q is a smart low-power, three-axis, capacitive MEMS accelerometer with 12 bits of resolution. This accelerometer is packed with embedded functions with flexible user programmable options, configurable to two interrupt pins. Embedded interrupt functions allow for overall power savings relieving the host processor from continuously polling data. The MMA8452Q has user selectable full scales of ±2g/±4g/±8g with high pass filtered data as well as non filtered data available real-time. The device can be configured to generate inertial wake-up interrupt signals from any combination of the configurable embedded functions allowing the MMA8452Q to monitor events and remain in a low power mode during periods of inactivity. This board breaks out the ground, power, I2C and two external interrupt pins. Note: If you are looking for the SparkFun Triple Axis Accelerometer Breakout with headers, it can be found here or in the Recommended Products below. Get Started with the MMA8452Q Breakout Hookup Guide Features 1.95 V to 3.6 V supply voltage 1.6 V to 3.6 V interface voltage ±2g/±4g/±8g dynamically selectable full-scale Output Data Rates (ODR) from 1.56 Hz to 800 Hz 12-bit and 8-bit digital output I2C digital output interface (operates to 2.25 MHz with 4.7 kΩ pullup) Two programmable interrupt pins for six interrupt sources Three embedded channels of motion detection Orientation (Portrait/Landscape) detection with set hysteresis High Pass Filter Data available real-time Current Consumption: 6 μA – 165 μA | 1/1 | |||
Adafruit LIS3DH Triple-Axis Accelerometer (+-2g/4g/8g/16g) The LIS3DH is a very popular low power triple-axis accelerometer. It's low-cost, but has just about every 'extra' you'd want in an accelerometer: Three axis sensing, 10-bit precision ±2g/±4g/±8g/±16g selectable scaling Both I2C (2 possible addresses) and SPI interface options Interrupt output Multiple data rate options 1 Hz to 5Khz As low as 2uA current draw (just the chip itself, not including any supporting circuitry) Tap, Double-tap, orientation & freefall detection 3 additional ADC inputs you can read over I2C To all that, we've also added: 3.3V regulator + level shifting, so you can safely use with any Arduino or microcontroller without the need for an external level shifter! We kept seeing this accelerometer in teardowns of commercial products and figured that if it's the most-commonly used accelerometer, its worth having a breakout board! This sensor communicates over I2C or SPI (our library code supports both) so you can share it with a bunch of other sensors on the same I2C bus. There's an address selection pin so you can have two accelerometers share an I2C bus. To get you going fast, we spun up a breakout board for this little guy. Since it's a 3V sensor, we add a low-dropout 3.3V regulator and level shifting circuitry on board. That means its perfectly safe for use with 3V or 5V power and logic. It's fully assembled and tested. Comes with a bit of 0.1" standard header in case you want to use it with a breadboard or perfboard. Two 2.5mm (0.1") mounting holes for easy attachment. Check out our tutorial for all sorts of details, including pinouts, assembly, wiring, and more! | 0/3 | |||
4-channel I2C-safe Bi-directional Logic Level Converter - BSS138 Because the Arduino (and Basic Stamp) are 5V devices, and most modern sensors, displays, flash cards and modes are 3.3V-only, many makers find that they need to perform level shifting/conversion to protect the 3.3V device from 5V.We do have some other handy level shifters in the shop, from the DIP 74LVC245 to the fancy bi-directional TXB0108. However, neither of these are happy to work with I2C, which uses a funky pull-up system to transfer data back and forth. This level shifter board combines the ease-of-use of the bi-directional TXB0108 with an I2C-compatible FET design following NXP's app note.This breakout has 4 BSS138 FETs with 10K pullups. It works down to 1.8V on the low side, and up to 10V on the high side. The 10K's do make the interface a little more sluggish than using a TXB0108 or 74LVC245 so we suggest checking those out if you need high-speed transfer.While we designed it for use with I2C, this works as well for TTL Serial, slow <2MHz SPI, and any other digital interface both uni-directional and bidirectional. Comes with a fully assembled, and tested PCB with 4 full bidirectional converter lines as well as 2 pieces of 6-pin header you can solder on to plug into a breadboard or perfboard. | 4/4 | |||
Adafruit VEML6070 UV Index Sensor Breakout This little sensor is a great way to add UV light sensing to any microcontroller project. The VEML6070 from Vishay has a true UV A light sensor and an I2C-controlled ADC that will take readings and integrate them for you over ~60ms to 500ms. Unlike the Si1145, this sensor will not give you UV Index readings. However, the Si1145 does UV Index approximations based on light level not true UV sensing. The VEML6070 in contrast does have a real light sensor in the UV spectrum. It's also got a much much simpler I2C interface so you can run it on the smallest microcontrollers with ease. Unlike the GUVA analog sensor, the biasing and ADC is all internal so you don't need an ADC. This UV sensor works great with 3 or 5V power or logic, its nice and compact, and its easy to use with any I2C-capable microcontroller. Each order comes with one assembled PCB with a sensor, some handy pullup resistors, a 270K rset resistor and a small piece of header. Some light soldering is required to attach the header but its a fast task! Check out our tutorial for details on on how to use this sensor, including files, code and assembly! | 1/1 | |||
Adafruit TSL2561 Digital Luminosity/Lux/Light Sensor Breakout The TSL2561 luminosity sensor is an advanced digital light sensor, ideal for use in a wide range of light situations. Compared to low cost CdS cells, this sensor is more precise, allowing for exact lux calculations and can be configured for different gain/timing ranges to detect light ranges from up to 0.1 - 40,000+ Lux on the fly. The best part of this sensor is that it contains both infrared and full spectrum diodes! That means you can separately measure infrared, full-spectrum or human-visible light. Most sensors can only detect one or the other, which does not accurately represent what human eyes see (since we cannot perceive the IR light that is detected by most photo diodes)New! As of June 3, 2014 we are shipping a version with a 3.3V regulator and level shifting circuitry so it can be used with any 3-5V power/logic microcontroller.The sensor has a digital (i2c) interface. You can select one of three addresses so you can have up to three sensors on one board - each with a different i2c address. The built in ADC means you can use this with any microcontroller, even if it doesn't have analog inputs. The current draw is extremely low, so its great for low power data-logging systems. about 0.5mA when actively sensing, and less than 15 uA when in powerdown mode.Of course, we wouldn't leave you with a datasheet and a "good luck!" - we wrote a detailed tutorial showing how to wire up the sensor, use it with CircuitPython or Arduino and example code that gets readings and calculates lux | 2/2 | |||
SparkFun Ambient Light Sensor Breakout - TEMT6000 Basic breakout board for the TEMT6000 Ambient Light Sensor. Only what you need, nothing you don’t. Sensor acts like a transistor - the greater the incoming light, the higher the analog voltage on the signal pin. | 1/1 | |||
RGB Color Sensor with IR filter and White LED - TCS34725 Your electronics can now see in dazzling color with this lovely color light sensor. We found the best color sensor on the market, the TCS34725, which has RGB and Clear light sensing elements. An IR blocking filter, integrated on-chip and localized to the color sensing photodiodes, minimizes the IR spectral component of the incoming light and allows color measurements to be made accurately. The filter means you'll get much truer color than most sensors, since humans don't see IR. The sensor also has an incredible 3,800,000:1 dynamic range with adjustable integration time and gain so it is suited for use behind darkened glass.We add supporting circuitry as well, such as a 3.3V regulator so you can power the breakout with 3-5VDC safely and level shifting for the I2C pins so they can be used with 3.3V or 5V logic. Finally, we specified a nice neutral 4150°K temperature LED with a MOSFET driver onboard to illuminate what you're trying to sense. The LED can be easily turned on or off by any logic level output.Connect to any microcontroller with I2C and our example code will quickly get you going with 4 channel readings. We include some example code to detect light lux and temperature that we snagged from the eval board software.A detailed tutorial is here, check out our Arduino library and follow our tutorial to install. Wire up the sensor by connecting VDD to 3-5VDC, Ground to common ground, SCL to I2C Clock and SDA to I2C Data on your Arduino. Restart the IDE and select the example sketch and start putting all your favorite fruit next to the sensor element! RGB Color Sensor with IR filter - TCS34725 (19:36) | 1/2 | |||
MCP9808 High Accuracy I2C Temperature Sensor Breakout Board This I2C digital temperature sensor is one of the more accurate/precise we've ever seen, with a typical accuracy of ±0.25°C over the sensor's -40°C to +125°C range and precision of +0.0625°C. They work great with any microcontroller using standard i2c. There are 3 address pins so you can connect up to 8 to a single I2C bus without address collisions. Best of all, a wide voltage range makes it usable with 2.7V to 5.5V logic!Unlike the DS18B20, this sensor does not come in through-hole package so we placed this small sensor on a breakout board PCB for easy use. The PCB includes mounting holes, and pull down resistors for the 3 address pins. We even wrote a lovely little tutorial and library that will work with Arduino or CircuitPython. You'll be up and running in 15 minutes or less.Some quick specs: Simple I2C control Up to 8 on a single I2C bus with adjustable address pins 0.25°C typical precision over -40°C to 125°C range (0.5°C guaranteed max from -20°C to 100°C) 0.0625°C resolution 2.7V to 5.5V power and logic voltage range Operating Current: 200 μA (typical) | 0/1 | |||
MPL115A2 - I2C Barometric Pressure/Temperature Sensor This pressure sensor from Freescale is a great low-cost sensing solution for measuring barometric pressure. At 1.5 hPa resolution, it's not as precise as our favorite pressure sensor, the BMx280 series, which has up to 0.03 hPa resolution so we don't suggest it as a precision altimeter. However, it's great for basic barometric pressure sensing. The sensor is soldered onto a PCB with 10K pull-up resistors on the I2C pins.This chip is good for use with power and logic voltages ranging from 2.4V to 5.5V so you can use it with your 3V or 5V microcontroller. There's a basic temperature sensor inside but there's no specifications in the datasheet so we're not sure how accurate it is.This chip looks and sounds a whole lot like the MPL3115A2 but this is the less precise version, best for barometric sensing onlyUsing the sensor is easy. For example, if you're using an Arduino, simply connect the VDD pin to the 5V voltage pin, GND to ground, SCL to I2C Clock (Analog 5 on an UNO) and SDA to I2C Data (Analog 4 on an UNO). Then download our MPL115A2 Arduino library and example code for temperature, pressure and basic altitude calculation. Install the library, and load the example sketch. Immediately you'll have the temperature, pressure and altitude data printed in the serial console. | 1/1 | |||
BMP180 Barometric Pressure/Temperature/Altitude Sensor- 5V ready This precision sensor from Bosch is the best low-cost sensing solution for measuring barometric pressure and temperature. Because pressure changes with altitude you can also use it as an altimeter! The sensor is soldered onto a PCB with a 3.3V regulator, I2C level shifter and pull-up resistors on the I2C pins.The BMP180 is the next-generation of sensors from Bosch, and replaces the BMP085. The good news is that it is completely identical to the BMP085 in terms of firmware/software - you can use our BMP085 tutorial and any example code/libraries as a drop-in replacement. The XCLR pin is not physically present on the BMP180 so if you need to know that data is ready you will need to query the I2C bus.This board is 5V compliant - a 3.3V regulator and a i2c level shifter circuit is included so you can use this sensor safely with 5V logic and power.Using the sensor is easy. For example, if you're using an Arduino, simply connect the VIN pin to the 5V voltage pin, GND to ground, SCL to I2C Clock (Analog 5) and SDA to I2C Data (Analog 4). Then download our BMP085/BMP180 Arduino library and example code for temperature, pressure and altitude calculation. Install the library, and load the example sketch. Immediately you'll have precision temperature, pressure and altitude data. Our detailed tutorial has all the info you need including links to software and installation instructions. It includes more information about the BMP180 so you can understand the sensor in depth including how to properly calculate altitude based on sea-level barometric pressure. BMP180 Barometric Pressure/Temperature/Altitude Sensor- 5V ready (4:40) | 1/1 | |||
Adafruit BMP280 I2C or SPI Barometric Pressure & Altitude Sensor Bosch has stepped up their game with their new BMP280 sensor, an environmental sensor with temperature, barometric pressure that is the next generation upgrade to the BMP085/BMP180/BMP183. This sensor is great for all sorts of weather sensing and can even be used in both I2C and SPI! This precision sensor from Bosch is the best low-cost, precision sensing solution for measuring barometric pressure with ±1 hPa absolute accuraccy, and temperature with ±1.0°C accuracy. Because pressure changes with altitude, and the pressure measurements are so good, you can also use it as an altimeter with ±1 meter accuracy. The BMP280 is the next-generation of sensors from Bosch, and is the upgrade to the BMP085/BMP180/BMP183 - with a low altitude noise of 0.25m and the same fast conversion time. It has the same specifications, but can use either I2C orSPI. For simple easy wiring, go with I2C. If you want to connect a bunch of sensors without worrying about I2C address collisions, go with SPI. Nice sensor right? So we made it easy for you to get right into your next project. The surface-mount sensor is soldered onto a PCB and comes with a 3.3V regulator and level shifting so you can use it with a 3V or 5V logic microcontroller without worry. We even wrote up a nice tutorial with wiring diagrams, schematics, libraries and examples to get you running in 10 minutes! And make sure to check the tutorial for example code for Arduino and CircuitPython, pinouts, assembly, wiring, downloads, and more! | 1/1 | |||
Adafruit CCS811 Air Quality Sensor Breakout - VOC and eCO2 Breathe easy - we finally have an I2C VOC/eCO2 sensor in the Adafruit shop! Add air quality monitoring to your project and with an Adafruit CCS811 Air Quality Sensor Breakout. This sensor from AMS is a gas sensor that can detect a wide range of Volatile Organic Compounds (VOCs) and is intended for indoor air quality monitoring. When connected to your microcontroller (running our library code) it will return a Total Volatile Organic Compound (TVOC) reading and an equivalent carbon dioxide reading (eCO2) over I2C. There is also an onboard thermistor that can be used to calculate the local ambient temperature. The CCS811 has a 'standard' hot-plate MOX sensor, as well as a small microcontroller that controls power to the plate, reads the analog voltage, and provides an I2C interface to read from. This part will measure eCO2 (equivalent calculated carbon-dioxide) concentration within a range of 400 to 8192 parts per million (ppm), and TVOC (Total Volatile Organic Compound) concentration within a range of 0 to 1187 parts per billion (ppb). According to the fact sheet it can detect Alcohols, Aldehydes, Ketones, Organic Acids, Amines, Aliphatic and Aromatic Hydrocarbons. We include a 10K NTC thermistor with matching balancing resistor which can be read by the CCS811 to calculate approximate temperature. Please note, this sensor, like all VOC/gas sensors, has variability and to get precise measurements you will want to calibrate it against known sources! That said, for general environmental sensors, it will give you a good idea of trends and comparisons.Also, AMS recommends that you run this sensor for 48 hours when you first receive it to "burn it in", and then 20 minutes in the desired mode every time the sensor is in use. This is because the sensitivity levels of the sensor will change during early use. Finally, this chip uses I2C clock stretching, and some microcontrollers/computers don't support that (e.g. Raspberry Pi) The CCS811 has a configurable interrupt pin that can fire when a conversion is ready and/or when a reading crosses a user-settable threshold. The CCS811 supports multiple drive modes to take a measurement every 1 second, every 10 seconds, every 60 seconds, or every 250 milliseconds. For your convenience we've pick-and-placed the sensor on a PCB with a 3.3V regulator and some level shifting so it can be easily used with your favorite 3.3V or 5V microcontroller. We've also prepared software libraries to get you up and running in Arduino IDE or CircuitPython with just a few lines of code! Check out our tutorial for more information! | 1/1 | |||
CAP1188 - 8-Key Capacitive Touch Sensor Breakout - I2C or SPI Add lots of touch sensors to your next microcontroller project with this easy-to-use 8-channel capacitive touch sensor breakout board, starring the CAP1188. This chip can handle up to 8 individual touch pads, and has a very nice feature that makes it stand out for us: it will light up the 8 onboard LEDs when the matching touch sensor fires to help you debug your sensor setup.The CAP1188 has support for both I2C and SPI, so it easy to use with any microcontroller. If you are using I2C, you can select one of 5 addresses, for a total of 40 capacitive touch pads on one I2C 2-wire bus. Using this chip is a lot easier than doing the capacitive sensing with analog inputs: it handles all the filtering for you and can be configured for more/less sensitivity.Comes with a fully assembled board, and a stick of 0.1" header so you can plug it into a breadboard. For contacts, we suggest using copper foil, then solder a wire that connects from the foil pad to the breakout.Getting started is a breeze with our Arduino library and tutorial. You'll be up and running in a few minutes, and if you are using another microcontroller, its easy to port our code. CAP1188 - 8-Key Capacitive Touch Sensor Breakout - I2C or SPI (1:35) | 0/1 | |||
SparkFun Capacitive Touch Sensor Breakout - MPR121 This is a breakout board for Freescale’s MPR121QR2. The MPR121 is a capacitive touch sensor controller driven by an I2C interface. The chip can control up to twelve individual electrodes, as well as a simulated thirteenth electrode. The MPR121 also features eight LED driving pins. When these pins are not configured as electrodes, they may be used to drive LEDs. There a four jumpers on the bottom of the board, all of which are set (closed) by default. An address jumper ties the ADD pin to ground, meaning the default I2C address of the chip will be 0x5A. If you need to change the address of the chip (by shorting ADD to a different pin), make sure you open the jumper first. Jumpers also connect SDA, SCL and the interrupt pin to 10k pull-up resistors. If you don’t require the pull-up resistors you can open the jumpers by cutting the trace connecting them. There is no regulation on the board, so the voltage supplied should be between 2.5 and 3.6VDC. The VREG pin is connected through a 0.1uF capacitor to ground, which means, unless you modify the board, you can’t operate the MPR121 in low-supply voltage mode (1.71-2.75VDC). | 1/1 | |||
ChronoDot - Ultra-precise Real Time Clock - v2.1 THIS IS THE LATEST VERSION 2.1The ChronoDot RTC is an extremely accurate real time clock module, based on the DS3231 temperature compensated RTC (TCXO). It includes a CR1632 battery, which should last at least 8 years if the I2C interface is only used while the device has 5V power available. No external crystal or tuning capacitors are required.The top side of the Chronodot now features a battery holder for 16mm 3V lithium coin cells. It pairs particularly well with CR1632 batteries.Click here for documentation and example code.The DS3231 has an internal crystal and a switched bank of tuning capacitors. The temperature of the crystal is continously monitored, and the capacitors are adjusted to maintain a stable frequency. Other RTC solutions may drift minutes per month, especially in extreme temperature ranges...the ChronoDot will drift less than a minute per year. This makes the ChronoDot very well suited for time critical applications that cannot be regularly synchronized to an external clock.The ChronoDot will plug into a standard solderless breadboard and also has mounting holes for chassis installation.The I2C interface is very straightforward and virtually identical to the register addresses of the popular DS1337 and DS1307 RTCs, which means that existing code for the Arduino, Basic Stamp, Cubloc, and other controllers should work with no modification. This new version has a battery holder, no soldering required! | 3/3 | |||
ADS1115 16-Bit ADC - 4 Channel with Programmable Gain Amplifier For microcontrollers without an analog-to-digital converter or when you want a higher-precision ADC, the ADS1115 provides 16-bit precision at 860 samples/second over I2C. The chip can be configured as 4 single-ended input channels, or two differential channels. As a nice bonus, it even includes a programmable gain amplifier, up to x16, to help boost up smaller single/differential signals to the full range. We like this ADC because it can run from 2V to 5V power/logic, can measure a large range of signals and its super easy to use. It is a great general purpose 16 bit converter.The chip's fairly small so it comes on a breakout board with ferrites to keep the AVDD and AGND quiet. Interfacing is done via I2C. The address can be changed to one of four options (see the datasheet table 5) so you can have up to 4 ADS1115's connected on a single 2-wire I2C bus for 16 single ended inputs. To get you started, we have example code for both the Raspberry Pi (in our Adafruit Pi Python library), Arduino (in our ADS1X15 Arduino library repository) and CircuitPython. Simply connect GND to ground, VDD to your logic power supply, and SCL/SDA to your microcontroller's I2C port and run the example code to start reading data. Our detailed guide will get you started with wiring diagrams, example code for Arduino & CircuitPython, datasheets, and more! | 7/8 | |||
MCP4725 Breakout Board - 12-Bit DAC w/I2C Interface Your microcontroller probably has an ADC (analog -> digital converter) but does it have a DAC (digital -> analog converter)??? Now it can! This breakout board features the easy-to-use MCP4725 12-bit DAC. Control it via I2C and send it the value you want it to output, and the VOUT pin will have it. Great for audio / analog projects, such as when you can't use PWM but need a sine wave or adjustable bias point.We break out the ADDR/A0 pin so you can connect two of these DACs on one I2C bus, just tie that pin of one high to keep it from conflicting. Also included is a 6-pin header, for use in a breadboard. Works with both 3.3V or 5V logic.Some nice extras with this chip: for chips that have 3.4Mbps Fast Mode I2C (Arduino's don't) you can update the Vout at ~200 KHz. There's an EEPROM so if you write the output voltage, you can 'store it' so if the device is power cycled it will restore that voltage. The output voltage is rail-to-rail and proportional to the power pin so if you run it from 3.3V, the output range is 0-3.3V. If you run it from 5V the output range is 0-5V.We have an easy-to-use Arduino library and tutorial with a triangle-wave and sine-wave output example that can be used with any 'duino or ported to any microcontroller with I2C host. Wiring it up is easy - connect VDD to your microcontroller power pin (3-5V), GND to ground, SDA to I2C Data (on the Arduino Uno, this is A4 on the Mega it is 20 and on the Leonardo digital 2), SCL to I2C Clock(on the Arduino Uno, this is A5 on the Mega it is 21 and on the Leonardo digital 3) and listen on VOUT. | 1/1 | |||
Adafruit DRV2605L Haptic Motor Controller The DRV2605 from TI is a fancy little motor driver. Rather than controlling a stepper motor or DC motor, its designed specifically for controlling haptic motors - buzzers and vibration motors. Normally one would just turn those kinds of motors on and off, but this driver has the ability to have various effects when driving a vibe motor. For example, ramping the vibration level up and down, 'click' effects, different buzzer levels, or even having the vibration follow a musical/audio input. This chip is controlled over I2C - after initialization, a 'string' of multiple effects can be strung together in the chips memory and then triggered to actuate in a row. The built in effects are much much nicer than just 'on' and 'off' and will make your haptic project way nicer feeling. According to the product page, it can be used with both LRA (Linear Resonance Actuator) and ERM (Eccentric Rotating Mass) type motors but we have only used it with our little vibration pancake ERM. We put this nice chip onto a breakout board. it works with both 3V and 5V power/logic, we have code specifically for Arduino but porting it to any I2C-capable processor should be quite simple. Check it out and get buzzing! | 12/12 | |||
SparkFun I2C DAC Breakout - MCP4725 You’ve always wanted to output analog voltages from a microcontroller, the MCP4725 is the DAC that will let you do it! The MCP4725 is an I2C controlled Digital-to-Analog converter (DAC). A DAC allows you to send analog signal, such as a sine wave, from a digital source, such as the I2C interface on the Arduino microcontroller. Digital to analog converters are great for sound generation, musical instruments, and many other creative projects! This version of the MCP4725 Breakout fixes a few issues with the board including the IC footprint, the I2C pinout, changes the overall board dimensions to better fit your projects, and a few more minor tweaks. This board breaks out each pin you will need to access and use the MCP4725 including GND and Signal OUT pins for connecting to an oscilloscope or any other device you need to hook up to the board. Also on board are SCL, SDA, VCC, and another GND for your basic I2C pinout. Additionally, if you are looking to have more than one MCP4725 on a bus, the pull-up resistors on this board can be disabled just check the Hookup Guide in the Documents section below for instructions and tips on doing this. Features 12-bit resolution I2C Interface (Standard, Fast, and High-Speed supported) Small package 2.7V to 5.5V supply Internal EEPROM to store settings | 5/5 | |||
TCA9548A I2C Multiplexer You just found the perfect I2C sensor, and you want to wire up two or three or more of them to your Arduino when you realize "Uh oh, this chip has a fixed I2C address, and from what I know about I2C, you cannot have two devices with the same address on the same SDA/SCL pins!" Are you out of luck? You would be, if you didn't have this ultra-cool TCA9548A 1-to-8 I2C multiplexer! Finally, a way to get up to 8 same-address I2C devices hooked up to one microcontroller - this multiplexer acts as a gatekeeper, shuttling the commands to the selected set of I2C pins with your command. Using it is fairly straight-forward: the multiplexer itself is on I2C address 0x70 (but can be adjusted from 0x70 to 0x77) and you simply write a single byte with the desired multiplexed output number to that port, and bam - any future I2C packets will get sent to that port. In theory, you could have 8 of these multiplexers on each of 0x70-0x77 addresses in order to control 64 of the same-I2C-addressed-part. Like all Adafruit breakouts, we put this nice chip on a breakout for you so you can use it on a breadboard with capacitors, and pullups and pulldowns to make usage a snap. Some header is required and once soldered in you can plug it into a solderless-breadboard. The chip itself is 3V and 5V compliant so you can use it with any logic level. We even wrote up a nice tutorial with wiring diagrams, schematics and examples to get you running in 10 minutes! | 4/4 | |||
LIDAR-Lite This is the LIDAR Lite, a compact high performance optical distance measurement sensor from PulsedLight. The LIDAR Lite is ideal when used in drone, robot, or unmanned vehicle situations where you need a reliable and powerful proximity sensor but don’t possess a lot of space. All you need to communicate with this sensor is a standard I2C or PWM interface and the LIDAR Lite, with its range of up to 40 meters, will be yours to command! Each LIDAR Lite features an edge emitting, 905nm (75um, 1 watt, 4 mrad, 14mm optic), single stripe laser transmitter and a surface mount PIN, 3° FOV with 14mm optics receiver. The LIDAR Lite operates between 4.7 - 5.5VDC with a max of 6V DC and has a current consumption rate of <100mA at continuous operation. On top of everything else, the LIDAR Lite has an acquisition time of only 0.02 seconds or less and can be interfaced via I2C or PWM. Note: The LIDAR Lite is designated as Class 1 during all procedures of operation, however operating the sensor without its optics or housing or making modifications to the housing can result in direct exposure to laser radiation and the risk of permanent eye damage. Direct eye contact should be avoided and under no circumstances should you ever stare straight into the emitter. | 1/1 | |||
LIDAR-Lite v2 This is the LIDAR-Lite v2, a compact high performance optical distance measurement sensor from PulsedLight. The LIDAR-Lite “Blue Label” is ideal when used in drone, robot, or unmanned vehicle situations where you need a reliable and powerful proximity sensor but don’t possess a lot of space. All you need to communicate with this sensor is a standard I2C or PWM interface. With everything connected the LIDAR-Lite v2, with its range of up to 40 meters, will be yours to command! Each LIDAR-Lite v2 features an edge emitting, 905nm (75um, 1 watt, 4 mrad, 14mm optic), single stripe laser transmitter and a surface mount PIN, 3° FOV with 14mm optics receiver. The second version of the LIDAR-Lite still operates at 5V DC with a current consumption rate of <100mA at continuous operation. On top of everything else, the LIDAR-Lite has an acquisition time of only 0.02 seconds or less and can be interfaced via I2C or PWM. The LIDAR-Lite v2 has received a number of upgrades from the previous version. With the implementation of a new signal processing architecture, LIDAR-Lite v2 can operate at measurement speeds of up to 500 readings per second offering greater resolution for scanning applications. Additionally, the LIDAR-Lite v2 has had its I2C communications improved to operate at 100 kbits/s or 400 kbits/s with you, the user, able to assign your own addressing! Just in case you are wondering: yes, the LIDAR-Lite v2 is compatible with its previous version in all primary functions and their compatibility will extend into the next version and beyond. Note: With Garmin® recently acquiring PulsedLight® the LIDAR-Lite v2 has been marked EOL. We are currently waiting on word about the next exciting product these two companies create. We will come back with additional information once we obtain it. Note: The LIDAR Lite is designated as Class 1 during all procedures of operation, however operating the sensor without its optics or housing or making modifications to the housing can result in direct exposure to laser radiation and the risk of permanent eye damage. Direct eye contact should be avoided and under no circumstances should you ever stare straight into the emitter. | 1/1 |