Image | Item | Location | Available | |
---|---|---|---|---|
Monochrome 2.3" 128x32 OLED Graphic Display Module Kit If you've been diggin' our monochome OLEDs but need something bigger, this display will delight you. These displays are 2.3" diagonal, and very readable due to the high contrast of an OLED display. This display is made of 128x32 individual blue OLED pixels, each one is turned on or off by the controller chip. Because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this graphic display for its crispness! The driver chip, SSD1305 can communicate in three ways: 8-bit, I2C or SPI. Personally we think SPI is the way to go, only 4 or 5 wires are required and its very fast. The OLED itself requires a 3.3V power supply and 3.3V logic levels for communication. We include a breadboard-friendly level shifter that can convert 3V or 5V down to 3V, so it can be used with 5V-logic devices like Arduino. The power requirements depend a little on how much of the display is lit but on average the display uses about 50mA from the 3.3V supply. Built into the OLED driver is a simple boost converter that turns 3.3V into a high voltage drive for the OLEDs. The boost converter which may make a squeaking/buzzing noise, which you can minimize by adding hot-glue or foam tape around the inductor but may not be completely removable. Each order comes with one assembled OLED module with a nice bezel and 4 mounting holes. The display is 3V logic & power so we include a HC4050 level shifter. We also toss in a 220uF capacitor, as we noticed an Arduino may need a little more capacitance on the 3.3V power supply for this big display! This display does not come with header attached but we do toss in a stick of header you can solder on. Also, the display may come in 8-bit mode. You can change modes from 8-bit to SPI or I2C with a little soldering, check out the tutorial for how to do so. Getting started is easy! We have a detailed tutorial and example code in the form of an Arduino library for text and graphics. You'll need a microcontroller with more than 512 bytes of RAM since the display must be buffered. The library can print text, bitmaps, pixels, rectangles, circles and lines. It uses 512 bytes of RAM since it needs to buffer the entire display but its very fast! The code is simple to adapt to any other microcontroller. | 2/2 | |||
Monochrome 2.7" 128x64 OLED Graphic Display Module Kit If you've been diggin' our monochome OLEDs but need something bigger, this display will delight you. These displays are 2.7" diagonal, and very readable due to the high contrast of an OLED display. This display is made of 128x64 individual white OLED pixels, each one is turned on or off by the controller chip. Because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this graphic display for its crispness! The driver chip, SSD1325 can communicate in two ways: 8-bit or SPI. Personally we think SPI is the way to go, only 4 or 5 wires are required. The OLED itself requires a 3.3V power supply and 3.3V logic levels for communication. We include a breadboard-friendly level shifter that can convert 3V or 5V down to 3V, so it can be used with 5V-logic devices like Arduino. The power requirements depend a little on how much of the display is lit but on average the display uses about 50-150mA from the 3.3V supply. Built into the OLED driver is a simple boost converter that turns 3.3V into a high voltage drive for the OLEDs. The boost converter which may make a squeaking/buzzing noise, which you can minimize by adding hot-glue or foam tape around the inductor but may not be completely removable. Each order comes with one assembled OLED module with a nice bezel and 4 mounting holes. The display is 3V logic & power so we include a 74HC4050 (or compatible) level shifter. We also toss in a 220uF capacitor, as we noticed an Arduino may need a little more capacitance on the 3.3V power supply for this big display! This display does not come with header attached but we do toss in a stick of header you can solder on. Also, the display may come in 8-bit mode. You can change modes from 8-bit to SPI with a little soldering, check out the tutorial for how to do so. Getting started is easy! We have a detailed tutorial and example code in the form of an Arduino library for text and graphics. You'll need a microcontroller with more than 1K of RAM since the display must be buffered. The library can print text, bitmaps, pixels, rectangles, circles and lines. It uses 1K of RAM since it needs to buffer the entire display but its very fast! The code is simple to adapt to any other microcontroller. | 1/1 | |||
Adafruit 128x64 OLED Bonnet for Raspberry Pi If you'd like a compact display, with buttons and a joystick - we've got what you're looking for. The Adafruit 128x64 OLED Bonnet for Raspberry Pi is the big sister to our mini PiOLED add-on. This version has 128x64 pixels (instead of 128x32) and a much larger screen besides. With the OLED display in the center, we had some space on either side so we added a 5-way joystick and two pushbuttons. Great for when you want to have a control interface for your project. These displays are small, only about 1.3" diagonal, but very readable due to the high contrast of an OLED display. This screen is made of 128x64 individual white OLED pixels and because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this miniature display for its crispness! Please note that this display is too small to act as a primary display for the Pi (e.g. it can't act like or display what would normally be on the HDMI screen). Instead, we recommend using pygame for drawing or writing text. Using the display and controls in python is very easy, we have a library ready-to-go for the SSD1306 OLED chipset and the joystick/buttons are connected to GPIO pins on the Pi. Our example code allows you to draw images, text, whatever you like, using the Python imaging library. We also have example code for using the joystick/buttons/OLED together. Our tests showed 15 FPS update rates so you can do animations or simple video. Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install our Python code! Works with any Raspberry Pi computer, including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero. Instructions, software, downloads and more in the Learning Guide! | 2/2 | |||
SparkFun Block for Intel® Edison - OLED The Intel® Edison is an ultra small computing platform that will change the way you look at embedded electronics. Each Edison is packed with a huge amount of tech goodies into a tiny package while still providing the same robust strength of your go-to single board computer. Powered by the Intel® Atom™ SoC dual-core CPU and including an integrated WiFi, Bluetooth LE, and a 70-pin connector to attach a veritable slew of shield-like “Blocks” which can be stacked on top of each other. It’s no wonder how this little guy is lowering the barrier of entry on the world of electronics! Equip your Edison with a graphic display using the Edison OLED Block! Simply snap this board onto your Edison to gain access to a 0.66", 64x48 pixel monochrome OLED. To add some control over your Edison and the OLED, this board also includes a small joystick and a pair of push-buttons which can be used them to create a game, file navigator, or more! If you are looking to add a little more stability to your Intel® Edison stack, check out this Hardware Pack. It will provide you with increased mechanical strength for stacking Blocks on your Edison! | 1/1 | |||
FeatherWing OLED - 128x32 OLED Add-on For All Feather Boards A Feather board without ambition is a Feather board without FeatherWings! This is the FeatherWing OLED: it adds a 128x32 monochrome OLED plus 3 user buttons to any Feather main board. Using our Feather Stacking Headers or Feather Female Headers you can connect a FeatherWing on top of your Feather board and let the board take flight! These displays are small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. This screen is made of 128x32 individual white OLED pixels and because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this miniature display for its crispness! We also toss on a reset button and three mini tactile buttons called A B and C so you can add a mini user interface to your feather. Tested working with all Feather boards. The OLED uses only the two I2C pins on the Feather, and you can pretty much stack it with any other FeatherWing, even ones that use I2C since that is a shared bus. To use, Check out our tutorial ! It has schematics, datasheets, files, and code examples. Check out our range of Feather boards here. | 3/4 | |||
SparkFun MicroView - OLED Arduino Module The MicroView is the first chip-sized Arduino compatible module that lets you see what your Arduino is thinking using a built-in OLED display. With the on-board 64x48 pixel OLED, you can use the MicroView to display sensor data, emails, pin status, and more. It also fits nicely into a breadboard to make prototyping easy. The MicroView also has a full-featured Arduino library to make programming the module easy. In the heart of MicroView there is ATMEL’s ATmega328P, 5V & 3.3V LDO and a 64x48 pixel OLED display, together with other passive components that allow the MicroView to operate without any external components other than a power supply. Additionally, the MicroView is 100% code compatible with Arduino Uno (ATmega328P version), meaning the code that runs on an Arduino Uno will also be able to run on the MicroView if the IO pins used in the code are externally exposed on the MicroView. Note: The MicroView programmer is sold separately. Check the recommended products below. Also, unlike the Kickstarter campaign, this does not come with the breadboard and USB cable. You only get the bare module. Get Started with the SparkFun MicroView Guide Features 64x48 Pixel OLED Display ATmega328P 5V Operational Voltage VIN Range: 3.3V - 16V 12 Digital I/O Pins (3 PWM) 6 Analog Inputs Breadboard Friendly DIP Package 32KB Flash Memory Arduino IDE 1.0+ Compatible | 2/2 | |||
SparkFun MicroView - USB Programmer The MicroView is the first chip-sized Arduino compatible module that lets you see what your Arduino is thinking using a built-in OLED display. This USB programmer connects directly to the MicroView and lets you not only program the module, but use it to interface with your computer, Rapsberry Pi, or other USB device. The programmer has both male and female headers which allow it to be plugged into a MicroView module and a breadboard at the same time, making prototyping quick and easy. If you want to learn more about the MicroView, check out the Kickstarter page. Note: A MicroView OLED Arduino Module is NOT included with this USB Programmer. Check the Recommended Products section below to find one! | 2/2 | |||
SparkFun Micro OLED Breakout The SparkFun Micro OLED Breakout Board breaks out a small monochrome, blue-on-black OLED. It’s “micro”, but it still packs a punch – the OLED display is crisp, and you can fit a deceivingly large amount of graphics on there. This breakout is perfect for adding graphics to your next Arduino project, displaying diagnostic information without resorting to serial output, and teaching a little game theory while creating a fun, Arduino-based video game. Most important of all, though, is the Micro OLED is easy to control over either an SPI or I2C interface. You may be asking yourself, “Why does this board look so familiar?” Yes, this is essentially a MicroView without the Arduino portion. We understand that sometimes you just need a breakout, an open door for you to explore the possibilities of a super small OLED screen. Speaking of, the screen on this breakout is only 64 pixels wide and 48 pixels tall, measuring 0.66" across. In total, the Micro OLED Breakout provides access to 16 of the OLED’s pins. Fortunately, though, you’ll only need about half of them to make the display work. The top row of pins (GND-CS) breaks out everything you’d need to interface with the OLED over an SPI or I2C interface. The pins on the bottom (D7-vB) are mostly only used if you need to control the display over a parallel interface. This board operates at 3.3V with a current of 10mA (20mA max). Get Started with the SparkFun Micro OLED Breakout Guide Features Operating Voltage: 3.3V Screen Size: 64x48 pixels (0.66" Across) Monochrome Blue-on-Black SPI or I2C Interface | 1/1 | |||
Monochrome 128x32 SPI OLED graphic display These displays are small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. This display is made of 128x32 individual white OLED pixels, each one is turned on or off by the controller chip. Because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this miniature display for its crispness!The driver chip SSD1306, communicates via SPI only. 4 or 5 pins are required to communicate with the chip in the OLED display.The OLED and driver require a 3.3V power supply and 3.3V logic levels for communication. To make it easier for our customers to use, we've added a 3.3v regulator and level shifter on board! This makes it compatible with any 5V microcontroller, such as the Arduino.The power requirements depend a little on how much of the display is lit but on average the display uses about 20mA from the 3.3V supply. Built into the OLED driver is a simple switch-cap charge pump that turns 3.3v-5v into a high voltage drive for the OLEDs, making it one of the easiest ways to get an OLED into your project!Of course, we wouldn't leave you with a datasheet and a "good luck": We have a detailed tutorial and example code in the form of an Arduino library for text and graphics. You'll need a microcontroller with more than 512 bytes of RAM since the display must be buffered.You can download our SSD1306 OLED display Arduino library from github which comes with example code. The library can print text, bitmaps, pixels, rectangles, circles and lines. It uses 512 bytes of RAM since it needs to buffer the entire display but its very fast! The code is simple to adapt to any other microcontroller. | 3/3 | |||
Monochrome 1.3" 128x64 OLED graphic display These displays are small, only about 1.3" diagonal, but very readable due to the high contrast of an OLED display. This display is made of 128x64 individual white OLED pixels, each one is turned on or off by the controller chip. Because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this miniature display for its crispness!The driver chip, SSD1306 can communicate in two ways: I2C or SPI. The OLED itself require a 3.3V power supply and 3.3V logic levels for communication, but we include a 3.3V regulator and all pins are fully level shifted so you can use with 5V devices!The power requirements depend a little on how much of the display is lit but on average the display uses about 40mA from the 3.3V supply. Built into the OLED driver is a simple switch-cap charge pump that turns 3.3v-5v into a high voltage drive for the OLEDs.We have a detailed tutorial and example code in the form of an Arduino library for text and graphics. You'll need a microcontroller with more than 1K of RAM since the display must be buffered. The library can print text, bitmaps, pixels, rectangles, circles and lines. It uses 1K of RAM since it needs to buffer the entire display but its very fast! The code is simple to adapt to any other microcontroller. | 1/1 |