Image | Item | Location | Available | |
---|---|---|---|---|
Assembled Terminal Block Breakout FeatherWing for all Feathers The Terminal Block Breakout FeatherWing kit is like the Golden Eagle of prototyping FeatherWings (eg. majestic, powerful, good-looking). To start, you get a nice prototyping area underneath your Feather, with extra pads for ground, 3.3V and SDA/SCL. Not one to stop there, we expanded the PCB out to 2" x 2.5" with 3.5mm pitch terminal blocks down each side. There's also four mounting holes so you can attach the breakout to your enclosure or project. This product works with all our Feathers! The terminal blocks allow you to connect to any of the external Feather pins, great for wiring temporary or permanent installations. We also give you a few extra terminal block pins for ground and 3.3V connections since those are so useful. Finally, there's a slide switch, which connects the EN pin to ground when in the 'off' position, cutting off the 3.3V regulator. Note that the FONA Feather uses both VBat and 3.3V as power supplies so you wont be able to fully turn off the FONA Feather with this switch. Note: As of Thursday, December 15th 2016, this product now comes fully assembled! Plug in your Feather and you're ready to go immediately. Also, the terminal blocks included with your product may be blue or black. | 2/2 | |||
FeatherWing Doubler - Prototyping Add-on For All Feather Boards This is the FeatherWing Doubler - a prototyping add-on and more for all Feather boards. This is similar to our FeatherWing Proto except there are two! The magic of the Doubler comes when stacking a Feather and another board on top of the Doubler so you can work with both boards simultaneously side-by-side! In addition to the board the Doubler comes with: 1 Doubler PCB 1 set Feather Stacking Headers 1 set Feather Female Headers The Doubler, like the Proto, has a duplicate breakout for each pin on a Feather, as well as a bunch of plain grid proto holes. Also, the two sets of pins are cross connected and for GND and 3.3V, we give you a full strip of connected pads. You'll need to solder on the female headers or stacking headers however you like, the Doubler comes as a mini kit! Check out our range of Feather boards here. | 2/2 | |||
Adafruit Ethernet FeatherWing Wireless is wonderful, but sometimes you want the strong reliability of a wire. If your Feather board is going to be part of a permanent installation, this Ethernet FeatherWing will let you add quick and easy wired Internet. Just plug in a standard ethernet cable, and run the Ethernet2 library for cross-platform networking. Works with all/any of our Feather boards! Ethernet is a tried-and-true networking standard. It's supported by every hub and switch, and because there's a physical connection you don't have to noodle around with SSIDs, passwords, authentication schemes or antennas. It works great with any of our Feathers, the WIZ5500 chip communicates over SPI plus a single CS pin. The Arduino Ethernet2 library works great, and within a few seconds after connecting, will do the DHCP setup for you. As a nice extra, the RJ-45 jack has both link and activity lights that will light/blink to let you know the current connection status. Note this product does not have PoE support, but you can add it by the addition of a PoE splitter. We have a version that provides 5V at 2.4 Amp max into a micro USB connector just plug in your Feather to be powered over the micro USB connection. Each order comes with one assembled and tested FeatherWing, plus some header. You will need to solder in the header yourself but its a quick task. Check out our tutorial for code, schematics, files and more! | 1/1 | |||
Adafruit LoRa Radio FeatherWing - RFM95W 900 MHz - RadioFruit Add short-hop wireless to your Feather with these RadioFruit Featherwings. These add-ons for any Feather board will let you integrate packetized radio (with the RFM69 radio) or LoRa radio (with the RFM9x's). These radios are good options for kilometer-range radio, and paired with one of our WiFi, cellular or Bluetooth Feathers, will let you bridge from 433/900 MHz to the Internet or your mobile device. These radio modules come in four variants (two modulation types and two frequencies) The RFM69's are easiest to work with, and are well known and understood. The LoRa radios are exciting, longer-range and more powerful but also more expensive. RFM69 @ 433 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 433 MHz for use in Europe ITU 1 license-free ISM, or for amateur use with restrictions (check your local amateur regulations!) RFM69 @ 900 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 868 or 915 MHz for use in Americas ITU 2 license-free ISM, or for amateur use with restrictions (check your amateur regulations!) RFM98 @ 433 MHz - LoRa capable radio at 433 MHz for use in Europe ITU 1 license-free ISM, or for amateur use with restrictions (check your local amateur regulations!) RFM95 @ 900 MHz - LoRa capable radio at 868 or 915 MHz for use in Americas ITU 2 license-free ISM, or for amateur use with restrictions (check your local amateur regulations!) This is the LoRa 9x @ 900 MHz radio version, which can be used for either 868MHz or 915MHz transmission/reception - the exact radio frequency is determined when you load the software since it can be tuned around dynamically. These are +20dBm LoRa packet radios that have a special radio modulation that is not compatible with the RFM69s but can go much much farther. They can easily go 2 Km line of sight using simple wire antennas, or up to 20Km with directional antennas and settings tweakings SX127x LoRa® based module with SPI interface Packet radio with ready-to-go Arduino libraries Uses the license-free ISM bands +5 to +20 dBm up to 100 mW Power Output Capability (power output selectable in software) ~300uA during full sleep, ~120mA peak during +20dBm transmit, ~40mA during active radio listening. Our initial tests with default library settings: over 1.2mi/2Km line-of-sight with wire quarter-wave antennas. (With setting tweaking and directional antennas, 20Km is possible). Currently tested to work with the Feather ESP8266, Teensy 3 Feather, Feather 32u4 and Feather M0 series, some wiring is required to configure the FeatherWing for the chipset you plan to use. All radios are sold individually and can only talk to radios of the same part number. E.g. RFM69 900 MHz can only talk to RFM69 900 MHz, LoRa 433 MHz can only talk to LoRa 433, etc. Each radio 'Wing comes with some header. Some soldering is required to attach the header. You will need to cut and solder on a small piece of wire (any solid or stranded core is fine) in order to create your antenna. Optionally you can pick up a uFL or SMA edge-mount connector and attach an external duck. | 4/4 | |||
DS3231 Precision RTC FeatherWing - RTC Add-on For Feather Boards A Feather board without ambition is a Feather board without FeatherWings! This is the DS3231 Precision RTC FeatherWing: it adds an extremely accurate I2C-integrated Real Time Clock (RTC) with a Temperature Compensated Crystal Oscillator (TCXO) to any Feather main board. This RTC is the most precise you can get in a small, low power package. Using our Feather Stacking Headers or Feather Female Headers you can connect a FeatherWing on top of your Feather board and let the board take flight! Check out our range of Feather boards here. Most RTCs use an external 32kHz timing crystal that is used to keep time with low current draw. And that's all well and good, but those crystals have slight drift, particularly when the temperature changes (the temperature changes the oscillation frequency very very very slightly but it does add up!) This RTC is in a beefy package because the crystal is inside the chip! And right next to the integrated crystal is a temperature sensor. That sensor compensates for the frequency changes by adding or removing clock ticks so that the timekeeping stays on schedule. With a CR1220 12mm coin cell plugged into the top of the FeatherWing, you can get years of precision timekeeping, even when main power is lost. Great for datalogging and clocks, or anything where you need to really know the time. A CR1220 coin cell is required to use the battery-backup capabilities! We don't include one by default, to make shipping easier for those abroad, but we do stock them so pick one up or use any CR1220 you have handy. Our tutorial for the DS3231 breakout has all the library and example code you need to get started, works with any and all of our Feathers using either Arduino or CircuitPython | 1/1 | |||
NeoPixel FeatherWing - 4x8 RGB LED Add-on For All Feather Boards A Feather board without ambition is a Feather board without FeatherWings! This is the NeoPixel FeatherWing, a 4x8 RGB LED Add-on For All Feather Boards! Using our Feather Stacking Headers or Feather Female Headers you can connect a FeatherWing on top or bottom of your Feather board and make your Feather board strut like a peacock at a rave. Put on your sunglasses before staring into these 32 configurable eye-blistering RGB LEDs. Arranged in a 4x8 matrix, each pixel is individually addressable. Only one pin is required to control all the LEDs. On the bottom we have jumpers for the DIN line to any of the I/O pins on a Feather. Works with any/all of our Feathers! You can cut the default jumper trace and use any pin you like. (In particular, the default pin for Feather Huzzah ESP8266 must be moved, try pin #15!) To make it easy to start, the LEDs are by default powered from either the USB power line or Battery power line, whichever is higher. Two Schottky diodes are used to switch between the two. This power arrangement is able to handle 1 Amp of constant current draw and maybe 2A peak, so not a good way to make a flashlight. It's better for colorful effects. A level-up shifter converts the 3.3V logic of the Feather to the power line voltage. If, say, you need MORE blinky, you can chain these together. For the second Wing, connect the DIN connection to the first Wing's DOUT. Also connect a ground pin together and power with an independant 5V supply to keep from loading the power supply too much. Check out our tutorial for pinouts, usage, and more! Our detailed NeoPixel Uberguide has everything you need to use NeoPixels in any shape and size. Including ready-to-go library & example code for the Arduino UNO/Duemilanove/Diecimila, Flora/Micro/Leonardo, Trinket/Gemma, Arduino Due & Arduino Mega/ADK (all versions) Check out our range of Feather boards here. | 2/2 | |||
FeatherWing OLED - 128x32 OLED Add-on For All Feather Boards A Feather board without ambition is a Feather board without FeatherWings! This is the FeatherWing OLED: it adds a 128x32 monochrome OLED plus 3 user buttons to any Feather main board. Using our Feather Stacking Headers or Feather Female Headers you can connect a FeatherWing on top of your Feather board and let the board take flight! These displays are small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. This screen is made of 128x32 individual white OLED pixels and because the display makes its own light, no backlight is required. This reduces the power required to run the OLED and is why the display has such high contrast; we really like this miniature display for its crispness! We also toss on a reset button and three mini tactile buttons called A B and C so you can add a mini user interface to your feather. Tested working with all Feather boards. The OLED uses only the two I2C pins on the Feather, and you can pretty much stack it with any other FeatherWing, even ones that use I2C since that is a shared bus. To use, Check out our tutorial ! It has schematics, datasheets, files, and code examples. Check out our range of Feather boards here. | 3/4 | |||
Adafruit 4-Digit 7-Segment LED Matrix Display FeatherWing One segment? No way dude! 7-Segments for life! A Feather board without ambition is a Feather board without FeatherWings! This is the Adafruit 4-Digit 7-Segment LED Matrix Display FeatherWing! This 7-segment FeatherWing backpack makes it really easy to add a 4-digit numeric display with decimal points and even 'second colon dots' for making a clock. This version does not come with an LED matrix. Its also available in combo packs of Blue, Green, Red, White, or Yellow which we recommend since you'll know you have a working LED matrix. Not guaranteed to work with any other 7-segment modules. 7-Segment Matrices like these are 'multiplexed' - so to control all the seven-segment LEDs you need 14 pins. That's a lot of pins, and there are driver chips like the MAX7219 that can control a matrix for you but there's a lot of wiring to set up and they take up a ton of space. Here at Adafruit we feel your pain! After all, wouldn't it be awesome if you could control a matrix without tons of wiring? That's where these LED Matrix FeatherWings come in! The LEDs themselves do not connect to the Feather. Instead, a matrix driver chip (HT16K33) does the multiplexing for you. The Feather simply sends i2c commands to the chip to tell it what LEDs to light up and it is handled for you. This takes a lot of the work and pin-requirements off the Feather. Since it uses only I2C for control, it works with any Feather and can share the I2C pins for other sensors or displays. The product kit comes with: A fully tested and assembled Adafruit 4-Digit 7-Segment LED Matrix Display FeatherWing Two 16-pin headers A bit of soldering is required to attach the matrix onto the FeatherWing but its very easy to do and only takes about 5 minutes! Note: Feather board and seven-segment display are not included, but we have lots available in the shop. Check out our detailed tutorial for pinouts, assembly, Arduino and CircuitPython usage, and more! | 3/3 | |||
8-Channel PWM or Servo FeatherWing Add-on For All Feather Boards A Feather board without ambition is a Feather board without FeatherWings! This is the 8-Channel PWM or Servo FeatherWing, you can add 8 x 12-bit PWM outputs to your Feather board. Using our Feather Stacking Headers or Feather Female Headers you can connect a FeatherWing on top or bottom of your Feather board and let the board take flight! You want to make a cool robot, maybe a hexapod walker, or maybe just a piece of art with a lot of moving parts. Or maybe you want to drive a lot of LEDs with precise PWM output. What now? You could give up OR you could just get our handy PWM and Servo FeatherWing. It's a lot like our popular PWM/Servo Shield but with half the channels & squished into a nice small portable size and works with any of our Feather boards. Since the FeatherWing only uses the I2C (SDA & SCL pins), it works with any and all Feathers! You can stack it with any other FeatherWing or with itself (just make sure you have each wing with a unique I2C address) Check out our range of Feather boards here. Specs: There's an I2C-controlled PWM driver with a built in clock. That means that, unlike the TLC5940 family, you do not need to continuously send it signal tying up your microcontroller, its completely free running! It is 5V compliant, which means you can control it from a 3.3V Feather and still safely drive up to 6V outputs (this is good for when you want to control white or blue LEDs with 3.4+ forward voltages) 6 address select pins so you can stack up to 62 of these on a single i2c bus, a total of 992 outputs - that's a lot of servos or LEDs Adjustable frequency PWM up to about 1.6 KHz 12-bit resolution for each output - for servos, that means about 4us resolution at 60Hz update rate Configurable push-pull or open-drain output We wrapped up this lovely chip into a FeatherWing with a couple nice extras: Terminal block for power input (or you can use the 0.1" breakouts on the side) Reverse polarity protection on the terminal block input Green power-good LED Two groups of 4 outputs on either side, 8 total. Stackable design. You'll need to pick up stacking headers and right angle 3x4 headers in order to stack on top of this shield without the servo connections getting in the way. A spot to place a big capacitor on the V+ line (in case you need it) 220 ohm series resistors on all the output lines to protect them, and to make driving LEDs trivial Solder jumpers for the 6 address select pins This product comes with a fully tested and assembled wing as well as 2 pieces of 3x4 male straight header (for servo/LED plugs), a 2-pin terminal block (for power) and a stick of 0.1" header so you can plug into a Feather. A little light soldering will be required to assemble and customize the board by attaching the desired headers but it is a 15 minute task that even a beginner can do. If you want to use right-angle 3x4 headers, we also carry a 4 pack in the shop. Servos and Feather not included, but we have lots of servos in the shop. Note: The terminal blocks included with your product may be blue or black. For additional information see our tutorial where you can get our documented Arduino and CircuitPython library with has both PWM and Servo examples! | 2/2 | |||
Adafruit 14-Segment Alphanumeric LED FeatherWing Display, elegantly, 012345678 or 9! Gaze, hypnotized, at ABCDEFGHIJKLM - well it can display the whole alphabet. You get the point. A Feather board without ambition is a Feather board without FeatherWings! This is the Adafruit 0.56" 4-Digit 14-Segment Display FeatherWing! This 14-segment FeatherWing backpack makes it really easy to add a bright alphanumeric display that shows letters and numbers in a beautiful hue. It's super bright and designed for viewing from distances up to 23 feet (7 meters) away. Works with any and all Feathers! 14-Segment Matrices like these are 'multiplexed' - so to control all the fourteen-segment LEDs you need 18 pins. That's a lot of pins, and there are driver chips like the MAX7219 that can control a matrix for you but there's a lot of wiring to set up and they take up a ton of space. Wouldn't it be awesome if you could control a matrix without tons of wiring? That's where these Alphanumeric LED Matrix FeatherWings come in, they make it really easy to add a 4-digit alphanumeric display with decimal points. The LEDs themselves do not connect to the Feather. Instead, a matrix driver chip (HT16K33) does the multiplexing for you. The Feather simply sends i2c commands to the chip to tell it what LEDs to light up and it is handled for you. This takes a lot of the work and pin-requirements off the Feather. Since it uses only I2C for control, it works with any Feather and can share the I2C pins for other sensors or displays. This product kit comes with: A fully tested and assembled Adafruit 4-Digit 14-Segment Alphanumeric Display FeatherWing Two sixteen pin headers A bit of soldering is required to attach the matrix onto the FeatherWing but its very easy to do and only takes about 5 minutes! Note: Feather board and 14-segment display are not included, but we have lots available in the shop. Of course, in classic Adafruit fashion, we also have a detailed tutorial showing you how to solder, wire and control the display. We even wrote a very nice library for the backpacks in both Arduino & CircuitPython so you can get running in under half an hour, displaying letters or numbers on the 14-segment. If you've been eyeing matrix displays but hesitated because of the complexity, this is the solution you've been looking for. | 1/1 | |||
FeatherWing Proto - Prototyping Add-on For All Feather Boards A Feather board without ambition is a Feather board without FeatherWings! This is the FeatherWing Proto - a prototyping add-on for all Feather boards. Using our Feather Stacking Headers or Feather Female Headers you can connect a FeatherWing on top or bottom of your Feather board and let the board take flight! This has a duplicate breakout for each pin on a Feather, as well as a bunch of plain grid proto holes. For GND and 3.3V, we give you a strip of connected pads. There's plenty of room for buttons, indicator LEDs, or anything for your portable project. The FeatherWing Proto makes an ideal partner for any of our Feather boards. Check out our range of Feather boards here. | 1/1 |