Image | Item | Location | Available | |
---|---|---|---|---|
Adafruit TSL2561 Digital Luminosity/Lux/Light Sensor Breakout The TSL2561 luminosity sensor is an advanced digital light sensor, ideal for use in a wide range of light situations. Compared to low cost CdS cells, this sensor is more precise, allowing for exact lux calculations and can be configured for different gain/timing ranges to detect light ranges from up to 0.1 - 40,000+ Lux on the fly. The best part of this sensor is that it contains both infrared and full spectrum diodes! That means you can separately measure infrared, full-spectrum or human-visible light. Most sensors can only detect one or the other, which does not accurately represent what human eyes see (since we cannot perceive the IR light that is detected by most photo diodes)New! As of June 3, 2014 we are shipping a version with a 3.3V regulator and level shifting circuitry so it can be used with any 3-5V power/logic microcontroller.The sensor has a digital (i2c) interface. You can select one of three addresses so you can have up to three sensors on one board - each with a different i2c address. The built in ADC means you can use this with any microcontroller, even if it doesn't have analog inputs. The current draw is extremely low, so its great for low power data-logging systems. about 0.5mA when actively sensing, and less than 15 uA when in powerdown mode.Of course, we wouldn't leave you with a datasheet and a "good luck!" - we wrote a detailed tutorial showing how to wire up the sensor, use it with CircuitPython or Arduino and example code that gets readings and calculates lux | 2/2 | |||
Adafruit VEML6070 UV Index Sensor Breakout This little sensor is a great way to add UV light sensing to any microcontroller project. The VEML6070 from Vishay has a true UV A light sensor and an I2C-controlled ADC that will take readings and integrate them for you over ~60ms to 500ms. Unlike the Si1145, this sensor will not give you UV Index readings. However, the Si1145 does UV Index approximations based on light level not true UV sensing. The VEML6070 in contrast does have a real light sensor in the UV spectrum. It's also got a much much simpler I2C interface so you can run it on the smallest microcontrollers with ease. Unlike the GUVA analog sensor, the biasing and ADC is all internal so you don't need an ADC. This UV sensor works great with 3 or 5V power or logic, its nice and compact, and its easy to use with any I2C-capable microcontroller. Each order comes with one assembled PCB with a sensor, some handy pullup resistors, a 270K rset resistor and a small piece of header. Some light soldering is required to attach the header but its a fast task! Check out our tutorial for details on on how to use this sensor, including files, code and assembly! | 1/1 | |||
GA1A12S202 Log-scale Analog Light Sensor Upgrade a project that uses a photocell with the GA1A12S202 analog light sensor. Like a CdS photo-cell, the sensor does not require a microcontroller, the analog voltage output increases with the amount of light shining on the sensor face. This sensor has a lot of improvements that make it better for nearly any project.The biggest improvement over plain photocells is a true log-lin relationship with light levels. Most light sensors have a linear relationship with light levels, which means that they're not very sensitive to changes in darkened areas and 'max' out very easily when there's a lot of light. Sometimes you can tweak a resistor to make them better in dark or bright light but its hard to get good performance at both ends. This sensor is logarithmic over a large dynamic range of 3 to 55,000 Lux, so it has a lot of sensitivity at low light levels but is also nearly impossible to "max out" so you can use it indoors or outdoors without changing code or calibration. Since the sensor is fabricated on a chip, there are also fewer manufacturing variations, so you won't have to calibrate the sensor from one board to another.Using the sensor is easy as pie: connect the Vin to 2.3-6VDC, Gnd to ground and measure the analog output on OUT. It will range up to 3V (at extremely bright outdoor sunlight). On an Arduino, just use analogRead() with the OUT pin connected to an analog pin. For more information including graphs, power consumption, etc check out the datasheet in the Tech Details tab. On this breakout we placed a 68KΩ resistor from OUT to ground to turn the current into a voltage. GA1A12S202 Log-scale Analog Light Sensor (6:52) | 2/2 | |||
QTR-8RC Reflectance Sensor Array This sensor module has 8 IR LED/phototransistor pairs mounted on a 0.375" pitch, making it a great detector for a line-following robot. Pairs of LEDs are arranged in series to halve current consumption, and a MOSFET allows the LEDs to be turned off for additional sensing or power-savings options. Each sensor provides a separate digital I/O-measurable output. Note: The QTR-8RC reflectance sensor array requires digital I/O lines to take readings. The similar QTR-8A reflectance sensor array is available with analog outputs, and the reflectance sensor is available individually as a QTR-1RC reflectance sensor or QTR-1A reflectance sensor. Functional Description The QTR-8RC reflectance sensor array is intended as a line sensor, but it can be used as a general-purpose proximity or reflectance sensor. The module is a convenient carrier for eight IR emitter and receiver (phototransistor) pairs evenly spaced at intervals of 0.375" (9.525 mm). To use a sensor, you must first charge the output node by applying a voltage to its OUT pin. You can then read the reflectance by withdrawing the externally supplied voltage and timing how long it takes the output voltage to decay due to the integrated phototransistor. Shorter decay time is an indication of greater reflection. This measurement approach has several advantages, especially when coupled with the ability of the QTR-8RC module to turn off LED power: No analog-to-digital converter (ADC) is required Improved sensitivity over voltage-divider analog output Parallel reading of multiple sensors is possible with most microcontrollers Parallel reading allows optimized use of LED power enable option The outputs are all independent, but the LEDs are arranged in pairs to halve current consumption. The LEDs are controlled by a MOSFET with a gate normally pulled high, allowing the LEDs to be turned off by setting the MOSFET gate to a low voltage. Turning the LEDs off might be advantageous for limiting power consumption when the sensors are not in use or for varying the effective brightness of the LEDs through PWM control. This sensor was designed to be used with the board parallel to the surface being sensed. The LED current-limiting resistors for 5 V operation are arranged in two stages; this allows a simple bypass of one stage to enable operation at 3.3 V. The LED current is approximately 20–25 mA, making the total board consumption just under 100 mA. The schematic diagram of the module is shown below: For a similar array with three sensors, consider our QTR-3RC reflectance sensor array. The sensors on the QTR-8RC are also available individually as the QTR-1RC reflectance sensor, and the QTR-L-1RC is an alternative designed to be used with the board perpendicular to the surface. QTR sensor size comparison. Clockwise from top left: QTR-3RC, QTR-1RC, QTR-L-1RC, QTR-8RC. Specifications Dimensions: 2.95" x 0.5" x 0.125" (without header pins installed) Operating voltage: 3.3-5.0 V Supply current: 100 mA Output format: 8 digital I/O-compatible signals that can be read as a timed high pulse Optimal sensing distance: 0.125" (3 mm) Maximum recommended sensing distance: 0.375" (9.5 mm) Weight without header pins: 0.11 oz (3.09 g) QTR-1RC output (yellow) when 1/8" above a black line and microcontroller timing of that output (blue). Interfacing the QTR-8RC Outputs to Digital I/O Lines The QTR-8RC module has eight identical sensor outputs that, like the Parallax QTI, require a digital I/O line capable of driving the output line high and then measuring the time for the output voltage to decay. The typical sequence for reading a sensor is: Turn on IR LEDs (optional). Set the I/O line to an output and drive it high. Allow at least 10 μs for the sensor output to rise. Make the I/O line an input (high impedance). Measure the time for the voltage to decay by waiting for the I/O line to go low. Turn off IR LEDs (optional). These steps can typically be executed in parallel on multiple I/O lines. With a strong reflectance, the decay time can be as low as several dozen microseconds; with no reflectance, the decay time can be up to a few milliseconds. The exact time of the decay depends on your microcontroller’s I/O line characteristics. Meaningful results can be available within 1 ms in typical cases (i.e. when not trying to measure subtle differences in low-reflectance scenarios), allowing up to 1 kHz sampling of all 8 sensors. If lower-frequency sampling is sufficient, substantial power savings can be realized by turning off the LEDs. For example, if a 100 Hz sampling rate is acceptable, the LEDs can be off 90% of the time, lowering average current consumption from 100 mA to 10 mA. Our Pololu AVR library provides functions that make it easy to use these sensors with our Orangutan robot controllers; please see the QTR Reflectance Sensors section of our library command reference for more information. We also have a Arduino library for these sensors. Breaking the Module in Two If you don’t need or cannot fit all eight sensors, you can break off two sensors and still use all 8 sensors as two separate modules, as shown below. The PCB can be scored from both sides along the perforation and then bent until it snaps apart. Each of the two resulting pieces will function as an independent line sensor. Included Components This module ships with a 25-pin 0.1" header strip and a 100 Ohm through-hole resistor as shown below. You can break the header strip into smaller pieces and solder them onto your reflectance sensor array as desired, or you can solder wires directly to the unit or use a right-angle header strip for a more compact installation. The pins on the module are arranged so that they can all be accessed using either an 11×1 strip or an 8×2 strip. The resistor is required to make the two-sensor array functional after the original eight-sensor array is broken into two pieces. This resistor is only needed once the board has been broken. Solder the included resistor to the 2-sensor array piece as shown to make the separated piece functional. How it works in detail For more information about how this sensor works, see the “How it works in detail” section of the QTR-1RC product page. People often buy this product together with: | 1/1 | |||
RGB Color Sensor with IR filter and White LED - TCS34725 Your electronics can now see in dazzling color with this lovely color light sensor. We found the best color sensor on the market, the TCS34725, which has RGB and Clear light sensing elements. An IR blocking filter, integrated on-chip and localized to the color sensing photodiodes, minimizes the IR spectral component of the incoming light and allows color measurements to be made accurately. The filter means you'll get much truer color than most sensors, since humans don't see IR. The sensor also has an incredible 3,800,000:1 dynamic range with adjustable integration time and gain so it is suited for use behind darkened glass.We add supporting circuitry as well, such as a 3.3V regulator so you can power the breakout with 3-5VDC safely and level shifting for the I2C pins so they can be used with 3.3V or 5V logic. Finally, we specified a nice neutral 4150°K temperature LED with a MOSFET driver onboard to illuminate what you're trying to sense. The LED can be easily turned on or off by any logic level output.Connect to any microcontroller with I2C and our example code will quickly get you going with 4 channel readings. We include some example code to detect light lux and temperature that we snagged from the eval board software.A detailed tutorial is here, check out our Arduino library and follow our tutorial to install. Wire up the sensor by connecting VDD to 3-5VDC, Ground to common ground, SCL to I2C Clock and SDA to I2C Data on your Arduino. Restart the IDE and select the example sketch and start putting all your favorite fruit next to the sensor element! RGB Color Sensor with IR filter - TCS34725 (19:36) | 1/2 | |||
SI1145 Digital UV Index / IR / Visible Light Sensor Remember when you were a kid and there was a birthday party at the pool and your parents totally embarrassed you by slathering you all over with sunscreen and you were all "MOM I HAVE ENOUGH SUNSCREEN" and she wouldn't listen? Well, if you had this UV Index sensor connected up to an Arduino you could have said "According to this calibrated SI1145 sensor from SiLabs, the UV index right now is 4.5 which means I do not need more sunscreen" and she would have been so impressed with your project that you could have spent more time splashing around. The SI1145 is a new sensor from SiLabs with a calibrated light sensing algorithm that can calculate UV Index. It doesn't contain an actual UV sensing element, instead it approximates it based on visible & IR light from the sun. We took this outside a couple days and compared the calculated UV index with the news-reported index and found it was very accurate! It's a digital sensor that works over I2C so just about any microcontroller can use it. The sensor also has individual visible and IR sensing elements so you can measure just about any kind of light - we only wrote our library to printout the 'counts' rather than the calculate the exact values of IR and Visible light so if you need precision Lux measurement check out the TSL2561. If you're feeling really advanced, you can connect up an IR LED to the LED pin and use the basic proximity sensor capability that is in the SI1145 as well. We wrapped this nice little sensor up on a PCB with level shifting and regulation circuitry so you can safely use it with 3 or 5V microcontrollers. If you are using an Arduino, we've got a lovely tutorial and library already written up with example code so you can quickly read sensor readings and the UV index in under 10 minutes. Each order comes with one fully assembled and tested PCB breakout and a small piece of header. You'll need to solder the header onto the PCB but it's fairly easy and takes only a few minutes even for a beginner. | 1/1 | |||
SparkFun Ambient Light Sensor Breakout - TEMT6000 Basic breakout board for the TEMT6000 Ambient Light Sensor. Only what you need, nothing you don’t. Sensor acts like a transistor - the greater the incoming light, the higher the analog voltage on the signal pin. | 1/1 | |||
SparkFun Luminosity Sensor Breakout - TSL2561 The TSL2561 SparkFun Luminosity Sensor Breakout is a sophisticated light sensor which has a flat response across most of the visible spectrum. Unlike simpler sensors, the TSL2561 measures both infrared and visible light to better approximate the response of the human eye. And because the TSL2561 is an integrating sensor (it soaks up light for a predetermined amount of time), it is capable of measuring both small and large amounts of light by changing the integration time. The TSL2561 is capable of direct I2C communication and is able to conduct specific light ranges from 0.1 - 40k+ Lux easily. Additionally, the TSL12561 contains two integrating analog-to-digital converters (ADC) that integrate currents from two photodiodes, simultaneously. Each breakout requires a supply voltage of 3V and a low supply current max of 0.6mA. | 1/1 | |||
SparkFun RGB Light Sensor - ISL29125 If you’ve had ideas for a project that depends on the ability to sense different spectrums of visible light and react based on those measurements, the ISL29125 breakout board may be just what you need. The ISL29125 breakout board makes it very easy to sense and record the light intensity of the general red, green, and blue spectrums of visible light while rejecting IR from light sources. You can then use these color sensor readings for the purposes of logging and finding patterns, or creatively calculate and make control decisions in your electronic projects. Each pin from the ISL29125 has been broken out to allow you to interface with it, SDA, SCL, 3.3V, GND, and even an optional INT pin is available for use. The ISL29125 Light Sensor operates at 3.3V but if you plan on using this chip with a 5V microcontroller make sure to use a logic level converter. Features Operating Voltage: 3.3V Operating Current: 56µA Selectable Range I2C (SMBus compatible) Output ADC Resolution 16 bits SCL, SDA, INT, 3.3V, & GND Pins Broken Out 18.4mm x 17.2mm x 2.4mm (0.7" x 0.6" x 0.09") | 2/2 |