Image | Item | Location | Available | |
---|---|---|---|---|
Stepper motor - NEMA-17 size - 200 steps/rev, 12V 350mA A stepper motor to satisfy all your robotics needs! This 4-wire bipolar stepper has 1.8° per step for smooth motion and a nice holding torque. The motor was specified to have a max current of 350mA so that it could be driven easily with an Adafruit motor shield for Arduino (or other motor driver) and a wall adapter or lead-acid battery. Some nice details include a ready-to-go cable and a machined drive shaft (so you can easily attach stuff). We drove it with an Adafruit motor shield for Arduino and it hummed along nicely at 50 RPM. To connect to our shield, put the wires in this order: Red, Yellow, skip ground, Green, Brown (or Gray) | 4/4 | |||
Adafruit DC & Stepper Motor HAT for Raspberry Pi - Mini Kit Let your robotic dreams come true with the new DC+Stepper Motor HAT from Adafruit. This Raspberry Pi add-on is perfect for any motion project as it can drive up to 4 DC or 2 Stepper motors with full PWM speed control. Raspberry Pi and motors are not included. Works with any and all Raspberry Pi computers with 2x20 connection port.Since the Raspberry Pi does not have a lot of PWM pins, we use a fully-dedicated PWM driver chip onboard to both control motor direction and speed. This chip handles all the motor and speed controls over I2C. Only two pins (SDA & SCL) are required to drive the multiple motors, and since it's I2C you can also connect any other I2C devices or HATs to the same pins. In fact, you can even stack multiple Motor HATs, up to 32 of them, for controlling up to 64 stepper motors or 128 DC motors (or a mix of the two) - just remember to purchase and solder in a stacking header instead of the one we include. Motors are controlled by TB6612 MOSFET drivers with 1.2A per channel current capability (you can draw up to 3A peak for approx 20ms at a time), a big improvement over L293D drivers and there are built-in flyback diodes as well. We even had a little space so we added a polarity protection FET on the power pins and a bit of prototyping area. And the HAT is assembled and tested here at Adafruit so all you have to do is solder on the included 2x20 plain header and the terminal blocks. Lets check out these specs again: 4 H-Bridges: TB6612 chipset provides 1.2A per bridge with thermal shutdown protection, internal kickback protection diodes. Can run motors on 4.5VDC to 13.5VDC. Up to 4 bi-directional DC motors with individual 8-bit speed selection (so, about 0.5% resolution) Up to 2 stepper motors (unipolar or bipolar) with single coil, double coil, interleaved or micro-stepping. Big terminal block connectors to easily hook up wires (18-26AWG) and power Polarity protected 2-pin terminal block and jumper to connect external 5-12VDC power Works best with Raspberry Pi model A+, B+, or Pi 2, but can be used with a model A or B if you purchase a 2x13 extra-tall header and solder that instead of the 2x20 Install the easy-to-use Python library, check out the examples and you're ready to go! Comes with an assembled & tested HAT, terminal blocks, and 2x20 plain header. Some soldering is required to assemble the headers on. Stacking header not included, but we sell them in the shop so if you want to stack HATs, please pick one up at the same time. Raspberry Pi, motors, and battery pack are not included but we have lots of motors in the shop and all our DC motors, and stepper motors work great. Check out our detailed tutorial for tons of info including schematics, wiring diagrams, python libraries and example walkthroughs. Note: The terminal blocks included with your product may be blue or black. | 4/4 | |||
Pimoroni Explorer HAT Pro for Raspberry Pi The Explorer HAT Pro is a terrific prototyping side-kick for your Raspberry Pi 2, B+, or A+! On the Explorer Pro from Pimoroni there are a heap of useful input and output options that will take your projects to the next level. Great for driving motors, using analog sensors, interfacing with 5V systems, and touch interfaces! Features: 4x buffered 5V tolerant inputsHook up your Pi to accept input from 5V systems (like Arduino Uno/Leonardo or 5V Trinkets). We've used a 5-channel buffer that will accept anything from 2V-5V as logic high. Hook up your Pi to accept input from 5V systems (like Arduino Uno/Leonardo or 5V Trinkets). We've used a 5-channel buffer that will accept anything from 2V-5V as logic high. 4x powered 5v outputs (up to 500mA!)The onboard darlington array can supply up to 500mA per channel (but you'll be limited to driving around 1A total from the board). Ideal for stepper motors, solenoids, and relays. The onboard darlington array can supply up to 500mA per channel (but you'll be limited to driving around 1A total from the board). Ideal for stepper motors, solenoids, and relays. 4x capacitive touch pads + 4x capacitive alligator clip padsFour along the front edge for touch input (labelled 1, 2, 3, 4) and four up the side for attaching alligator clips to objects (such as fruit, or tin foil) for experimentation! Four along the front edge for touch input (labelled 1, 2, 3, 4) and four up the side for attaching alligator clips to objects (such as fruit, or tin foil) for experimentation! 4x colored LEDsIndependently controllable LEDs (red, green, blue, and yellow) that make great status indicators. Independently controllable LEDs (red, green, blue, and yellow) that make great status indicators. 1x mini breadboard on top The Explorer HAT *Pro* also has a few additional features: 4x analog inputsA tidy way to integrate analog signals into your project. A tidy way to integrate analog signals into your project. 2x H-bridge motor driversDrive two 5V motors bidirectionally with up to 200mA per channel. Ideal with our micro-metal gear-motors to create the perfect little buggy! You can even soft-PWM for full speed control. Drive two 5V motors bidirectionally with up to 200mA per channel. Ideal with our micro-metal gear-motors to create the perfect little buggy! You can even soft-PWM for full speed control. A heap of useful (unprotected) 3v3 goodies from the GPIO And head on over to Pimoroni's GitHub to find a Python library, examples, documentation, and a brief introduction to the Explorer HAT! | 2/2 | |||
Pimoroni Explorer pHAT for Raspberry Pi Zero The Explorer pHAT is the perfect prototyping side-kick for your Raspberry Pi. Based on Pimoroni's popular Explorer Hat Pro, this is a smaller cheaper version designed to fit perfectly on a Raspberry Pi Zero! A heap of useful input and output options have been added that will take your projects to the next level. Great for driving motors, using analog sensors, and interfacing with 5V sensors & systems Though designed to match the format of the Raspberry Pi Zero it is compatible with all 40-pin GPIO Raspberry Pi variants (2/B+/A+). Features: Python API Four analog inputs - A tidy way to integrate analog signals into your project. Two H-bridge motor drivers - Drive two 5V motors bidirectionally with up to 200mA per channel. Ideal with our micro-metal gear-motors to create the perfect little buggy! You can even soft-PWM for full speed control. Four buffered 5V tolerant inputs - Hook up your Pi to accept input from 5V systems (like Arduino Uno/Leonardo or 5V Trinkets). We've used a 5-channel buffer that will accept anything from 2V-5V as logic high. Four powered 5V outputs (up to 500mA!) - The onboard darlington array can supply up to 500mA per channel (but you'll be limited to driving around 1A total from the board). Ideal for stepper motors, solenoids, and relays. Kit includes: Assembled Explorer HAT PCB, one 2x20 0.1" female GPIO header, and one 1x20 0.1" female header. Some light soldering is required to attach the header on, or you can of course solder the pHAT right onto the Pi Zero Check out Pimonori's full Python library, documentation and examples. Raspberry Pi not included! | 1/1 | |||
Big Easy Driver The Big Easy Driver, designed by Brian Schmalz, is a stepper motor driver board for bi-polar stepper motors up to a max 2A/phase. It is based on the Allegro A4988 stepper driver chip. It’s the next version of the popular Easy Driver board. Each Big Easy Driver can drive up to a max of 2A per phase of a bi-polar stepper motor. It is a chopper microstepping driver which defaults to 16 step microstepping mode. It can take a maximum motor drive voltage of around 30V, and includes on-board 5V/3.3V regulation, so only one supply is necessary. Although this board should be able to run most systems without active cooling while operating at 1.4-1.7A/phase, a heatsink is required for loads approaching 2A/phase. You can find the recommended heatsink in the related items below. Note: This product is a collaboration with Brian Schmalz. A portion of each sales goes back to him for product support and continued development. Features Bi-polar Microstepping Driver 2A/Phase Max 1.4-1.7A/Phase w/o Heatsink Max Motor Drive Voltage: 30V On-board 5V/3.3V Regulation | 1/1 | |||
EasyDriver - Stepper Motor Driver The EasyDriver is a simple to use stepper motor driver, compatible with anything that can output a digital 0 to 5V pulse (or 0 to 3.3V pulse if you solder SJ2 closed on the EasyDriver). The EasyDriver requires a 6V to 30V supply to power the motor and can power any voltage of stepper motor. The EasyDriver has an on board voltage regulator for the digital interface that can be set to 5V or 3.3V. Connect a 4-wire stepper motor and a microcontroller and you’ve got precision motor control! EasyDriver drives bi-polar motors, and motors wired as bi-polar. I.e. 4,6, or 8 wire stepper motors. This EasyDriver V4.5 has been co-designed with Brian Schmalz. It provides much more flexibility and control over your stepper motor, when compared to older versions. The microstep select (MS1 and MS2) pins of the A3967 are broken out allowing adjustments to the microstepping resolution. The sleep and enable pins are also broken out for further control. Note: Do not connect or disconnect a motor while the driver is energized. This will cause permanent damage to the A3967 IC. Note: This product is a collaboration with Brian Schmalz. A portion of each sales goes back to them for product support and continued development. Features A3967 Microstepping Driver MS1 and MS2 pins broken out to change microstepping resolution to full, half, quarter and eighth steps (defaults to eighth) Compatible with 4, 6, and 8 wire stepper motors of any voltage Adjustable current control from 150mA/phase to 700mA/phase Power supply range from 6V to 30V. The higher the voltage, the higher the torque at high speeds | 1/2 | |||
Tic T500 USB Multi-Interface Stepper Motor Controller (Connectors Soldered) The Tic T500 USB Multi-Interface Stepper Motor Controller makes basic control of a stepper motor easy, with quick configuration over USB using our free software. The controller supports six control interfaces: USB, TTL serial, I²C, analog voltage (potentiometer), quadrature encoder, and hobby radio control (RC). This version incorporates an MPS MP6500 driver and ships with soldered header pins and terminal blocks. It can operate from 4.5 V to 35 V and can deliver up to approximately 1.5 A per phase without a heat sink or forced air flow (or 2.5 A max with sufficient additional cooling). The Tic family of stepper motor controllers makes it easy to add basic control of a bipolar stepper motor to a variety of projects. These versatile, general-purpose modules support six different control interfaces: USB for direct connection to a computer, TTL serial and I²C for use with a microcontroller, RC hobby servo pulses for use in an RC system, analog voltages for use with a potentiometer or analog joystick, and quadrature encoder for use with a rotary encoder dial. They also offer many settings that can be configured using our free configuration utility (for Windows, Linux, and macOS). This software simplifies initial setup of the device and allows for in-system testing and monitoring of the controller via USB (a micro-B USB cable is required to connect the Tic to a computer). The table below lists the members of the Tic family and shows the key differences among them. 1 See product pages and user’s guide for operating voltage limitations. Tic T500 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Tic T834 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Tic T825 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Tic T249 USB Multi-Interface Stepper Motor Controller, bottom view with dimensions. Features and specifications Open-loop speed or position control of one bipolar stepper motor A variety of control interfaces: USB for direct connection to a computer TTL serial operating at 5 V for use with a microcontroller I²C for use with a microcontroller RC hobby servo pulses for use in an RC system Analog voltage for use with a potentiometer or analog joystick Quadrature encoder input for use with a rotary encoder dial, allowing full rotation without limits (not for position feedback) STEP/DIR inputs for compatibility with existing stepper motor control firmware USB for direct connection to a computer TTL serial operating at 5 V for use with a microcontroller I²C for use with a microcontroller RC hobby servo pulses for use in an RC system Analog voltage for use with a potentiometer or analog joystick Quadrature encoder input for use with a rotary encoder dial, allowing full rotation without limits (not for position feedback) STEP/DIR inputs for compatibility with existing stepper motor control firmware Acceleration and deceleration limiting Maximum stepper speed: 50,000 steps per second Very slow speeds down to 1 step every 200 seconds (or 1 step every 1428 seconds with reduced resolution). Up to six different microstep resolutions: The Tic T825, Tic T834, and T249 support full step, half step, 1/4 step, 1/8 step, 1/16 step, and 1/32 step The Tic T500 supports full step, half step, 1/4 step, 1/8 step The Tic T825, Tic T834, and T249 support full step, half step, 1/4 step, 1/8 step, 1/16 step, and 1/32 step The Tic T500 supports full step, half step, 1/4 step, 1/8 step Digitally adjustable current limit Optional safety controls to avoid unexpectedly powering the motor Input calibration (learning) and adjustable scaling degree for analog and RC signals 5 V regulator (no external logic voltage supply needed) Optional limit switch inputs with homing capabilities Optional kill switch inputs STEP/DIR outputs for controlling external stepper motor drivers Connects to a computer through USB via a USB A to Micro-B cable (not included) Free configuration software available for Windows, Linux, and macOS Comprehensive user’s guide New revision (tic03b): As of 3 January 2019, we are shipping a new revision of the Tic T500 that works better with low-resistance, low-inductance stepper motors at high input voltages and high current limits, which could lead to lost steps with the original tic03a version. Please contact us if you have the older version and would like a free replacement. The Tic T500 is based on the MP6500 IC from Monolithic Power Systems. This driver IC features automatic decay mode selection, using internal current sensing to automatically adjust the decay mode as necessary to provide the smoothest current waveform. The Tic T500 can operate from 4.5 V to 35 V and can deliver up to approximately 1.5 A continuous per phase without a heat sink or forced air flow (the peak current per phase is 2.5 A). This version is sold with connectors soldered so no soldering is necessary to use it. Powering the Tic T500 with a supply voltage between 4.5 V and 5.5 V might cause its logic voltage to be lower than normal, which could affect operation. See the user’s guide for more information. Tic T500 USB Multi-Interface Stepper Motor Controller (Connectors Soldered). A version is also available with header pins and terminal blocks included but not soldered. People often buy this product together with: | 2/2 |