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Abstract. In this paper, we introduce a novel composite Cellular 

Automata (CA) model to explore the space of design for human 

environments. Consisting of multiple, regularly spaced, interleaved 1D 

CA, our model provides a mechanism to evolve flexible spatial units, 

where the ‘cells’ are not defined as programmatic elements but as 

‘form-making’ elements. The efficacy of this approach is evaluated 

via a standard methodology, typically used in the study of complex 

adaptive systems. We systematically examine the dynamics of a series 

of instances of the composite CA by varying initial conditions and 

transition rules. A measure of entropy is used to validate emergent 

patterns. Subsequently, we investigate whether the composite CA is 

capable of generating aggregate spatial units to match specific spatial 

configurations, using a well-known example as a benchmark. This 

phase allows us to bring an understanding of the results into the 

context of architectural design. 
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1. Introduction  

Design can be conceived as a purposeful, constrained, decision-making 

process where the aim is to transform an existing situation into a desired one 

(Press, 1995, Simon, 1996). When designing environments for humans, such 

transformations are typically developed by generating some sort of physical 

form (Woodbury, 1991), where the aim is to characterise the space and make 

it suitable for different forms of inhabitation to take place. 
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Given the ‘wicked’ nature of most design problems (Buchanan, 1992), 

designers are forced to use a combination of data and intuition in order to 

generate an outcome to satisfy intended purposes (Alexander, 1964). In or-

der to test their assumptions, they go through a synthetic process, generating 

a series of potential candidates, and evaluating them to find the most suitable 

for their purposes (Swann, 2002). Under this perspective it can be said that 

design is not problem solving, but it relates to art, as defined by Danish au-

thor Piet Hein: ‘Art is solving problems that cannot be formulated before 

they have been solved. The shaping of the question is part of the answer’ 

(cited byArup, 1972). More succinctly, architectural design can be thought 

of as a particular method of problem solving that considers the search 

through a set of alternatives in order to find a desired output: architecture 

then, appears as a generative process (Mitchell, 1977). 

In this paper, we introduce a novel composite Cellular Automata (CA) 

model to explore the space of design for human environments. Our genera-

tive system is capable of producing a design space by defining initial condi-

tions, rules and design criteria. This approach represents a departure from the 

oversimplification that the ‘form-follows-function’ paradigm, main design 

motto of the modern movement (Coates et al., 1996), as it explores new 

techniques, capable of enabling the discovery of emergent structures suited 

for a contemporary conception of human inhabitation. Significantly, the 

overarching goal of this research is to define a way in which low-level de-

sign elements (Lynch, 1981) interact in, and with space, in order to enable 

the exploration of a design solution space. 

2. Background  

CA are an abstract mathematical framework or ‘generative method’ that 

have been used with some success, in the production of search spaces, espe-

cially during the early stages of the design process. They are discrete dynam-

ical systems comprising a number of typically identical simple components 

(cells), with local connectivity over a regular lattice whose global configura-

tion changes over time, according to a local state transition rule. CA imple-

mentations and functions, regardless of their complexity, regularity and con-

straints, require the definition of characteristics (cells, cell-states and 

neighbourhood) that can be directly interpreted as spatial configurations, 

which makes them appear suitable for applications in design-related fields 

(O’Sullivan and Torrens, 2001). 

In architecture, 3D implementations of CA have been typically used to 

produce diagrams of spatial configurations in early design stages. In these 

applications, the cells of the CA generally represent 3D spatial units with 
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programmatic characteristics (e.g. housing units, rooms, public spaces, circu-

lation spaces, etc.), which results in functionally deterministic outputs. Ex-

amples include work by Coates et al. (1996), Krawczyk (2002), Herr et al. 

(Herr and Ford, 2015, Herr and Kvan, 2007) and Araghi and Stouffs (2015).  

There are a few examples that use ‘Game of Life’-based 3D CA models 

for the generation of diagrams at early design stages. Coates et al (1996) de-

veloped one to search for emergent patterns, as Conway did with his original 

model (Gardner, 1970). For this purpose, a series of rule combinations and 

neighbourhood manipulations are explored, aiming to understand the possi-

bilities they open for architecture. Krawczyk (2002) uses CA to generate a 

starting point for design, but the main focus is on how the outcomes of the 

model can be translated into architectural form, by changing the characteris-

tics of cells. The desired outcomes or other parameters that allow for the 

evaluation of the system’s performance are not defined. 

Herr and Kvan (2007) present an approach where the designer is provid-

ed with a certain degree of freedom to reconfigure the lattice and to inter-

vene in the process, steering the evolution of the CA to attain design goals. 

This implementation iterates between solving and reformulating the design 

problem, which helps reducing the post-processing of outcomes to detailing. 

Araghi et al (2015) present a CA that generates variety for the develop-

ment of high density housing, by addressing accessibility and lighting as ad-

ditional design requirements. These requirements translate into cell states 

that depend on the configuration of the neighbourhood, as well as update 

rules that inform the development of the system. The definition of 3D cells 

implies a design operation that binds the form of the cell to a function, ren-

dering the results of the development of said models functionally static. 

3. Composite CA model  

We introduce a composite CA model, consisting of multiple, regularly 

spaced, interleaved 1D CAs (Fig 1a) arranged in a horizontal-vertical con-

figuration (Fig 1b). This composite model provides a mechanism to evolve 

flexible spatial units, where the ‘cells’ are not defined as programmatic ele-

ments but as ‘form-making’ elements. This represents a departure from how 

CA models are typically used in architecture and urban design. Our approach 

focuses on the ways in which space can be physically reshaped and recon-

figured, where its characteristics (such as open/closed, fragment-

ed/continuous, exterior/interior etc.) emerge from the evolution of the sys-

tem, rather than being prescribed by design. 
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Figure 1. (a) Standard 1D CA. (b) Configuration of composite 1D CA: interleaved horizontal 
and vertical 1D CAs. (c) Representative example of one spatial unit, (four active boundaries). 

What differentiates our approach from a standard 2D CA is the fact that 

the multiple 1D CA act as the edges of encapsulated ‘spatial units’ (Fig 1c). 

This approach is similar in some respects to bond percolation models in that 

the state of the cells in the 1D CA (edges of the individual spatial units) are 

either active (on) of inactive (off). If a cell in a 1D CA is off, the spatial units 

on either side of it are connected. If the cell is on, the spatial units are sepa-

rated. The main difference between a traditional 2D CA and the composite 

CA model proposed is that in the former, the states of the cells are prede-

fined, whereas in the latter the individual spatial units embedded do not have 

prior meaning; their characteristics are defined by the configuration of the 

1D CAs that constitutes their boundaries. 

In our composite CA, there are two possible states for each cell (k=2). 

Given the configuration of the interleaved 1D CAs, this results in 16 differ-

ent possible configurations for each of the encapsulated spatial units. In Fig 

2, we illustrate these configurations in 3D to emphasise the boundaries of the 

encapsulated 2D spatial units, rather than their faces. Significantly, our ap-

proach provides a robust and flexible alternative to a k=16 state 2D CA. 

 

 Figure 2. 3D representation of the 16 spatial configurations the model is capable of producing 
for a single 2D spatial unit. Binary counting is used to number the active edges. 
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Figure 3. (a) Standard 2D CA. Each cell is a spatial unit in itself. 3 cell configuration depict-
ed. (b) 3D representation of three possible spatial unit configurations that can be produced 

with the proposed composite CA model. 

In Fig 3, we illustrate the exploratory power embedded in the composite 

CA model. Here, we show representative examples of the complex spatial 

topologies that emerge as a result of the concatenation or combination of 

multiple edges being active/inactive at the same time. It is this formation of 

aggregates or clusters of ‘enclosed space’ that subsequently generates a vol-

umetric matrix for spatial organisation to be used by the designer. 

Given the description of the composite CA (cell states=2, neighbour-

hood=3, a fixed number of horizontal and vertical 1D CAs), all that remains 

is a definition of the state transition rules and initial conditions. In our proto-

type model, we use random initial conditions and have selected representa-

tive rules from each of the four Wolfram’s (1984, 2002)  elementary 1D CA 

classes: Class I (uniformity) contains rules that generate uniform patterns 

(i.e. cell states become constant after a number of generations); Class II 

(repetition) contains rules that produce repetitive patterns, making the out-

comes completely predictable. Class III (random) contains rules that gener-

ate outcomes with no discernible patterns. Finally, Class IV (complexity) 

contains rules that generate discernible patterns that repeat as the system de-

velops. However, the frequency and location where these patterns occur is 

unpredictable. 

4. Experiments  

4.1. METHODOLOGY  

A key feature of our composite CA model is its ability to evolve (or gener-

ate) spatial configurations, defining by spatial boundaries, rather than by us-

ing the state of cells to characterise that space. To test the efficacy of this 

approach, a standard methodology typically used in the study of complex 

adaptive systems has been followed. We start by systematically examining 

the dynamics of instantiated instances of the composite CA by varying the 

initial conditions of each CA and transition rules. We use a measure of en-

tropy to validate emergent patterns. 
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In the second phase of our investigation we examine whether the compo-

site CA can generate aggregate spatial units to match specific spatial config-

urations, which allows us to bring an understanding of the results into the 

context of architectural design. As a benchmark spatial configuration, we use 

the typical section of the interlocking units of the ‘Unité d’habitation’ by Le 

Corbusier (Fig 4a). This choice of benchmark was motivated by its formal 

characteristics that allow for a series of potentially desirable attributes in 

terms of lighting, ventilation and circulation performance that could be fur-

ther investigated as input parameters to be implemented into the proposed 

system. As shown in Fig 4b, the selected cross section has been ‘translated’ 

to the ‘language’ of the composite CA model, using the alphabet of the 16 

possible spatial units illustrated in Fig 2. Model performance is described us-

ing standard machine learning similarity measures. 

 

Figure 4 (a) Typical cross section of interlocking units from the Unité d'habitation in Mar-
seille (Le Corbusier). (b) The abstract representation of the benchmark cross section. The 

numbers correspond to the key described in Fig 2 

4.2. VALIDATION OF THE COMPOSITE MODEL  

In our experiments, we set the number 1D CAs to 22 (11 vertical and 11 hor-

izontal), where each 1D CA consisted of 12 cells. Thus, each of the possible 

encapsulated spatial units can be uniquely defined on one boundary by a cell 

located at the end of its automaton (see Fig 1b). Table 1 lists the rule combi-

nations/pairing from Wolfram’s 1D elementary rules and classes (two rules 

from each of class II, III and IV), used for sensitivity analysis. 

TABLE 1. Rule sets for analysis with corresponding rule classification in parentheses. 

Horizontal Rule 62 (II) 94 (II) 62 (II) 62 (II) 30 (III) 30 (III) 54 (IV) 54 (IV) 

Vertical Rule 94 (II) 62 (II) 30 (III) 54 (IV) 60 (III) 54  (IV) 30 (III) 110 (IV) 

For each iteration of the composite CA, the cells are updated synchro-

nously, using the given rule associated with the specific orientation (horizon-

tal or vertical). Each of the rule combinations was run for 100 time steps 
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(generations), using three different seed values for the random initial condi-

tions. We refer to a generated time-series data set as an iteration of the sys-

tem. The key validation step is carried out by calculating the entropy of the 

system, as it is understood in information theory, where a high value means 

that a large amount of information is needed to represent the state of the sys-

tem (Cilliers, 1998). Here, we calculate entropy at each time step using 

Shannon’s equation (Equation 1), which allows us to visualise how the sys-

tem changes over time. 

𝐻(𝑥) =  − ∑ 𝑝 (𝑥𝑖) ×  𝑙𝑜𝑔2 𝑝(𝑥𝑖) (1) 

In Fig 5 we can observe that where rules from class II are in use (solid 

line), the plot shows the value of entropy entering a periodic cycle after a 

few time steps. However, when combining rules from classes II and III 

(dashed line), the plot shows that the variation in the value of entropy de-

scribes an unpredictable pattern. These observations are consistent with what 

is expected in the system dynamics from the Wolfram’s classes, thus we can 

conclude that the composite CA is performing as expected. 

 

Figure 5. Entropy calculated for two different sets of rules over 100 generations: solid line 
shows combination of class II rules. Dashed line shows combination of class II and III rules. 

4.3. EVOLVING SPATIAL UNITS  

To evaluate the form generating capabilities of the composite CA model, the 

benchmark configuration described in Fig 4b acts as the target, where the 

goal is to measure the similarity between this benchmark and the evolved 

spatial unit configurations.   

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
∑ 𝐴𝑖×𝐵𝑖

√𝐴𝑖
2×√𝐵𝑖

2
 (2) 

The plot in Fig 6, illustrates the distribution of spatial unit configurations 

corresponding to the best result obtained from the simulation experiments 

(similarity = 0.87). Despite this relatively high similarity score, there are 

significant differences between the evolved and target configurations. How-

ever, an interesting observation is that the evolved configuration encapsu-

lates examples of each of the spatial units listed in Fig 2, whereas the 
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benchmark does not. The graphic representations of both configurations, 

shown in Fig 7, highlight these differences. 

 

Figure 6. Distribution of 2D spatial units by type (according to Fig 2) for the benchmark and 
the composite CA: rules 30 (horizontal), 54 (vertical), with initial state 2, after 77 generations 

 

Figure 7. (a) Spatial representation of benchmark. (b) Spatial representation of configuration 
with highest cosine similarity score. 

In the next stage of our analysis, we compare the benchmark and the 

evolved configurations ‘element by element’ by counting how many differ-

ent spatial units are identical in both topology and location. 

 An inspection of the vector of spatial unit counts shows that the minimum 

number of matches was 6, achieved when using class II rules (94 horizontal/ 

62 vertical), initial state 0, and it repeats every 7 generations. On the other 

hand, a maximum number of 19 matches was reached in two simulation 

trials: i) Class III and IV rules (30 horizontal/54 vertical), initial state 2, and 

it appears after 21 and 52 generations; ii) Class IV rules (54 horizontal/110 

vertical), initial state 0 and it appeared after 84 generations. Fig 8 presents a 

visual comparison between the benchmark and trial ii. 

Similar to the comparative patterns presented in Fig 7, it is possible to 

observe in Fig 8 that most of the matching elements are part of sub-patterns. 

Therefore, the exploration of a search strategy focused on sub-structures, ra-

ther than on the configuration of the complete pattern, appears as a method 

suitable for generating a wider range of usable results. It is significant to 

note that in the case illustrated in Figs 7 and 8, the sub-patterns only appear 
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as result of the comparison process, as their boundaries are not clearly de-

fined. However, looking at the benchmark configuration, there are three sub-

structures clearly defined by their boundaries, the most obvious being the 

square in the centre. 

 

Figure 8. Matching elements between (a) benchmark configuration, and (b) composite CA: 
for rules 54 (horizontal), 110 (vertical), with initial state 0, after 84 generations. 

5. Discussion  

In this paper, we have introduced a novel composite CA that can be used to 

generate a variety of spatial unit configurations, defining the boundaries of 

space, rather than by prescribing spatial characteristics of the constituent 

elements of the system. Our goal was to explore the formation of aggregates 

(clusters) of ‘enclosed’ space, representing an ‘interesting’ spatial 

organization, which can be detailed, developed or interpreted by a designer 

at a later stage. Significantly, our model was able to produce a wide variety 

of aggregate patterns. 

 It can be argued that the strength of the composite CA system is 

based on informing a designer about the inherent complexity rather than act-

ing as a tool for generating completed design solutions. The ability to gener-

ate/search the state space is defined by transition rules and the time evolution 

of the model.  In our experiments, the benchmark target was pre-defined. 

Searching for a fixed, static configuration limits the possibilities as to what 

can be imagined by the user, defeating the ultimate purpose of the model – 

generating a design space, and searching through it using design criteria, 

looking for emergent spatial configurations. Therefore, introducing protocols 

for searching for characteristics of the space (e.g. open vs. closed space), ra-

ther than specific patterns, is seen as a goal to pursue in order to enable the 

emergence of unexpected spatial configurations. In this regard, the develop-

ment of mechanisms to incorporate modifications to the rules as the system 
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evolves, as well as the introduction of external influences, are seen as plau-

sible paths to pursue in order to extend the system’s capabilities. 
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